搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高O/Ga比的a-GaOx能带结构及其MS界面电子传输机制

田坤 孔乐 邓金祥 张庆 孟雪 吴瑞 许佳伟 刘伟曼 杨晓磊

引用本文:
Citation:

高O/Ga比的a-GaOx能带结构及其MS界面电子传输机制

田坤, 孔乐, 邓金祥, 张庆, 孟雪, 吴瑞, 许佳伟, 刘伟曼, 杨晓磊

Band structure of high O/Ga ratio a-GaOx and its electron transport mechanism at metal-semiconductor interface

TIAN Kun, KONG Le, DENG Jinxiang, ZHANG Qing, MENG Xue, WU Rui, XU Jiawei, LIU Weiman, YANG Xiaolei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 非晶氧化镓(a-GaOx)具有较宽的带隙、大击穿场强、高可见光透过率、对特定波长的紫外光敏感、制备温度低、工艺较为简单、衬底适用范围广及易获得高质量薄膜等特点, 一般用于制备透明电子器件、紫外探测器, 大功率器件以及气体传感器. 目前对于a-GaOx的研究较少且集中于氧镓化学计量比(O/Ga比)小于等于1.5的薄膜. 薄膜中的O/Ga比的变化会影响其化学键的形成, 并对能带结构产生较大影响, 本文通过控制合适的工艺参数, 制备了氧镓比从3.89—3.39呈梯度变化的薄膜, 并对其能带结构和MS界面电子输运机制进行研究, 发现其光学带隙和局域态浓度逐渐增大, 其MS界面IV特性从肖特基整流特性逐渐向欧姆特性转变. 结果表明, 氧原子比例增大会使其价带顶升高, 并且过量的氧原子会与镓原子形成Ga2O, 使其局域态浓度增大, 导致其导带底降低以及施主浓度增大, 从而改变MS界面的电子输运机制.
    Amorphous gallium oxide (a-GaOx) exhibits excellent electrical conductivity, a wide bandgap, high breakdown field strength, high visible light transmittance, high sensitivity to specific ultraviolet wavelengths, low preparation temperatures, relatively simple processing, wide substrate applicability, and ease of obtaining high-quality thin films. These attributes make it a suitable candidate for applications in transparent electronic devices, ultraviolet detectors, high-power devices, and gas sensors. Presently, the research on a-GaOx remains limited, focusing primarily on films with an O/Ga ratio less than or equal to 1.5. Increasing the concentration of oxygen vacancies to enhance the conductivity of the material often leads to a reduction in its bandgap, which is undesirable for high-power applications. Variations in O/Ga in the films can affect the formation of chemical bonds and significantly influence the band structure. In this study, five groups of a-GaOx thin films with high oxygen-to-gallium ratios are successfully fabricated by increasing the gas flow rate at low sputtering power. The elemental compositions of the films are analyzed using energy dispersive spectroscopy (EDS), revealing the O/Ga ratio gradually decreasing from 3.89 to 3.39. Phase analysis by using X-ray Diffraction (XRD) confirms the amorphous nature of the films. Optical properties are characterized using an ultraviolet-visible spectrophotometer (UV-Vis), indicating that the optical bandgap and the density of localized states gradually increase. X-ray photoelectron spectroscopy (XPS) is utilized to analyze the elemental compositions, chemical states, and valence band structures of the films, showing that the valence band maximum decreases and the content of Ga2O within the material increases. Subsequently, Au/a-Ga2Ox/Ti/Au Schottky devices are fabricated under the same processing conditions. The I-V characteristics of these devices are measured using a Keithley 4200, revealing changes in the electron transport mechanism at the metal-semiconductor (MS) interface, with the gradual increase in electron affinity calculated. C-V characteristics are measured using a Keithley 590, and the donor concentration (density of localized states) at the interface is calculated to gradually increase. In summary, by controlling appropriate process parameters, it is possible to improve the conductivity of electronic devices while increasing the bandgap of a-GaOx, which is significant for high-power applications.
  • 图 1  a-GaOx薄膜X射线衍射图谱

    Fig. 1.  X-ray diffraction pattern of a-GaOx thin film.

    图 2  (a) a-GaOx薄膜的紫外-可见光吸收率曲线; (b) a-GaOx薄膜的$ hv{\text{ - }}{\left( {\alpha hv} \right)^2} $关系曲线; (c) a-GaOx薄膜的$ \ln \alpha {\text{ - }}hv $关系曲线

    Fig. 2.  (a) Ultraviolet-visible light absorption curve of a-GaOx thin film; (b) the $ hv{\text{ - }}{\left( {\alpha hv} \right)^2} $ relationship curve of a-GaOx thin film; (c) the $ \ln \alpha {\text{ - }}hv $ relationship curve of a-GaOx thin film.

    图 3  (a) a-GaOx薄膜的XPS价带谱; (b) a-GaOx薄膜的价带顶能量值

    Fig. 3.  (a) XPS valence band spectrum of a-GaOx thin films; (b) the valence of a-GaOx film with the maximum energy value.

    图 4  (a)—(e) a-GaOx薄膜O 1s的XPS图谱; (f)—(j) a-GaOx薄膜Ga 3d XPS图谱

    Fig. 4.  (a)–(e) O 1s XPS spectra of a-GaOx thin film; (f)–(j) Ga 3d XPS spectra of a-GaOx thin film.

    图 5  a-GaOx Schottky器件 (a)结构图; (b) J-V特性曲线; (c) lnJ-V特性曲线; (d) 1/C2-V特性曲线

    Fig. 5.  a-GaOx Schottky device: (a) Structure; (b) J-V curves; (c) lnJ-V curves; (d) 1/C2-V curves.

    图 6  Au/a-GaOx界面处能带结构示意图

    Fig. 6.  Schematic diagram of the band structure at the Au/a-GaOx interface.

    图 7  (a) TLM结构示意图; (b) a-GaOxRtatal -L关系图

    Fig. 7.  (a) Schematic diagram of TLM structure; (b) diagrams Rtatal -L of a-GaOx.

    表 1  a-GaOx中各元素原子百分比与O/Ga比

    Table 1.  Percentage of atoms of each element and O/Ga ratio in a-GaOx.

    样品 O/% Ga/% Si/% O/Ga比 氧气流量/(cm3·min–1)
    N1 79.31 20.37 0.32 3.89 0
    N2 77.33 21.19 1.48 3.64 2
    N3 77.11 21.57 1.32 3.57 3
    N4 77.37 21.73 0.91 3.56 4
    N5 76.60 22.57 0.83 3.39 5
    下载: 导出CSV

    表 2  a-GaOxEgEU

    Table 2.  Eg and EU of a-GaOx.

    样品 N1 N2 N3 N4 N5
    Eg /eV 5.200 5.237 5.271 5.277 5.282
    EU/eV 0.337 0.349 0.408 0.411 0.422
    O/Ga比 3.89 3.64 3.57 3.56 3.39
    氧气流量/(cm3·min–1) 0 2 3 4 5
    下载: 导出CSV

    表 3  a-GaOx的氧空位浓度与Ga1+浓度

    Table 3.  Oxygen Vacancy Concentration and Ga1+ Concentration in a-GaOx.

    样品S1S2S3S4S5
    O/Ga比3.893.643.573.563.39
    氧空位浓度/%3635384038
    Ga1+浓度/%5862676876
    下载: 导出CSV

    表 4  Au/a-GaOx界面的理想因子n与势垒$ {\varphi _{{\text{Bn}}}} $

    Table 4.  Ideal factors n and potential barriers $ {\varphi _{{\text{Bn}}}} $ of Au/ a-GaOx interface.

    样品S1S2S3S4S5
    n1.6631.3971.0411.3950.923
    $ {\varphi _{{\text{Bn}}}} $/V0.8670.8660.8120.8030.797
    $ q\chi $/eV4.2334.2344.2884.2974.303
    $ {R_{{\text{on, sp}}}} $ /(Ω·cm2)1483413332305208
    下载: 导出CSV

    表 5  a-GaOx的TLM结构的接触电阻率rc与片电阻Rsheet

    Table 5.  Contact resistivity rc and chip resistance Rsheet of the TLM structure of a-GaOx.

    样品M1M2M3M4M5
    rc/(Ω·mm)2.63×1092.71×1092.17×1092.08×1091.70×109
    Rsheet/
    (Ω·□–1)
    1.33×10107.94×1095.94×1094.16×1093.39×109
    下载: 导出CSV
  • [1]

    Wang Y F, Su J, Lin Z H, Zhang J C, Chang J J, Hao Y 2022 J. Mater. Chem. C 10 13395Google Scholar

    [2]

    Wang Y F, Xue Y X, Su J, Lin Z H, Zhang J C, Chang J J, Hao Y 2022 Mater. Today Adv. 16 100324Google Scholar

    [3]

    Peelaers H, Van de Walle C G 2015 Phys. Status Solidi (a) 252 828Google Scholar

    [4]

    Segura A, Artús L, Cuscó R, Goldhahn R, Feneberg M 2017 Phys. Rev. Mater. 1 024604Google Scholar

    [5]

    Vu T K O, Lee D U, Kim E K 2019 J. Alloys Compd. 806 874Google Scholar

    [6]

    Feng X J, Li Z, Mi W, Luo Y, Ma J 2015 Mater. Sci. Semicond. Process. 34 52Google Scholar

    [7]

    He W, Wang Z X, Zheng T, Wang L Y, Zheng S W 2021 J. Electron. Mater. 50 3856Google Scholar

    [8]

    Zhang Y J, Yan J L, Li Q S, Qu C, Zhang L Y, Xie W F 2011 Mater. Sci. Eng. B 176 846Google Scholar

    [9]

    Tak B, Dewan S, Goyal A, Pathak R, Gupta V, Kapoor A, Nagarajan S, Singh R 2019 Appl. Surf. Sci. 465 973Google Scholar

    [10]

    Kim B G 2021 J. Korean Phys. Soc. 79 946Google Scholar

    [11]

    Cui S J, Mei Z X, Zhang Y H, Liang H L, Du X L 2017 Adv. Opt. Mater. 5 1700454Google Scholar

    [12]

    Zhang F, Li H, Cui Y T, Li G L, Guo Q 2018 AIP Adv. 8 045112Google Scholar

    [13]

    Zhu W H, Xiong L L, Si J W, Hu Z L, Gao X, Long L Y, Li T, Wan R Q, Zhang L, Wang L C 2020 Semicond. Sci. Technol. 35 055037Google Scholar

    [14]

    An Y H, Guo D Y, Li S Y, Wu Z P, Huang Y Q, Li P G, Li L, Tang W H 2016 J. Phys. D: Appl. Phys. 49 285111Google Scholar

    [15]

    Zhang Y F, Chen X H, Xu Y, Ren F F, Gu S L, Zhang R, Zheng Y D, Ye J D 2019 Chin. Phys. B 28 028501Google Scholar

    [16]

    Akiyama T, Kawamura T, Ito T 2023 Appl. Phys. Express 16 015508Google Scholar

    [17]

    Li W X, Wan J X, Tu Z X, Li H, Wu H, Liu C 2022 Ceram. Int. 48 3185Google Scholar

    [18]

    Heinemann M D, Berry J, Teeter G, Unold T, Ginley D 2016 Appl. Phys. Lett. 108 022107Google Scholar

    [19]

    Zhang J L, Yuan Y D, Yang X T, Zheng Y J, Zhang H G, Zeng G G 2023 J. Phys. D: Appl. Phys. 56 085103Google Scholar

    [20]

    Ding J Q, Liu Y, Gu X Y, Zhang L, Zhang X D, Chen X, Liu W J, Cai Y, Guo S S, Sun C L 2024 Physica B 682 415888Google Scholar

    [21]

    Lyle L A, Back T C, Bowers C T, Green A J, Chabak K D, Dorsey D L, Heller E R, Porter L M 2021 APL Mater. 9 061104Google Scholar

    [22]

    Gopalan P, Knight S, Chanana A, Stokey M, Ranga P, Scarpulla M A, Krishnamoorthy S, Darakchieva V, Galazka Z, Irmscher K 2020 Appl. Phys. Lett. 117 252103Google Scholar

  • [1] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展. 物理学报, doi: 10.7498/aps.71.20220015
    [2] 张勇, 施毅敏, 包优赈, 喻霞, 谢忠祥, 宁锋. 表面钝化效应对GaAs纳米线电子结构性质影响的第一性原理研究. 物理学报, doi: 10.7498/aps.66.197302
    [3] 李立明, 宁锋, 唐黎明. 量子局域效应和应力对GaSb纳米线电子结构影响的第一性原理研究. 物理学报, doi: 10.7498/aps.64.227303
    [4] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能. 物理学报, doi: 10.7498/aps.61.237103
    [5] 陈懂, 肖河阳, 加伟, 陈虹, 周和根, 李奕, 丁开宁, 章永凡. 半导体材料AAl2C4(A=Zn, Cd, Hg; C=S, Se)的电子结构和光学性质. 物理学报, doi: 10.7498/aps.61.127103
    [6] 郭宝增, 张锁良, 刘鑫. 钎锌矿相GaN电子高场输运特性的Monte Carlo 模拟研究. 物理学报, doi: 10.7498/aps.60.068701
    [7] 于峰, 王培吉, 张昌文. Al掺杂SnO2 材料电子结构和光学性质. 物理学报, doi: 10.7498/aps.60.023101
    [8] 万文坚, 姚若河, 耿魁伟. Mg和Zn掺杂CuAlS2电子结构的分析. 物理学报, doi: 10.7498/aps.60.067103
    [9] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, doi: 10.7498/aps.60.097103
    [10] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, doi: 10.7498/aps.59.7291
    [11] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.3414
    [12] 孔祥兰, 侯芹英, 苏希玉, 齐延华, 支晓芬. Ba0.5Sr0.5TiO3电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.58.4128
    [13] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, doi: 10.7498/aps.58.5632
    [14] 季正华, 曾祥华, 胡永金, 谭明秋. 高压下ZnSe的电子结构和光学性质. 物理学报, doi: 10.7498/aps.57.3753
    [15] 关 丽, 刘保亭, 李 旭, 赵庆勋, 王英龙, 郭建新, 王书彪. 萤石结构TiO2的电子结构和光学性质. 物理学报, doi: 10.7498/aps.57.482
    [16] 胡永金, 崔 磊, 赵 江, 滕玉永, 曾祥华, 谭明秋. 高压下ZnS的电子结构和性质. 物理学报, doi: 10.7498/aps.56.4079
    [17] 陈德艳, 吕铁羽, 黄美纯. BaSe的准粒子能带结构. 物理学报, doi: 10.7498/aps.55.3597
    [18] 潘洪哲, 徐 明, 祝文军, 周海平. β-Si3N4电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.55.3585
    [19] 章永凡, 丁开宁, 林 伟, 李俊篯. VC(001)弛豫表面构型与电子结构第一性原理研究. 物理学报, doi: 10.7498/aps.54.1352
    [20] 梁君武, 胡慧芳, 韦建卫, 彭 平. 氧吸附对单壁碳纳米管的电子结构和光学性能的影响. 物理学报, doi: 10.7498/aps.54.2877
计量
  • 文章访问数:  255
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-08
  • 修回日期:  2025-04-13
  • 上网日期:  2025-05-10

/

返回文章
返回