-
康普顿相机用于γ射线成像具有装置轻便、探测效率高和成像能区广的优点.然而,由于探测系统难以分辨康普顿散射事件和散射光子吸收事件,造成图像重建错误.使用GEANT4蒙特卡罗程序构建了基于三维位置灵敏碲锌镉探测器的康普顿相机模型,模拟探测远场137Cs点源特征γ射线并逐个事件地记录探测器中发生相互作用的位置和沉积的能量.使用反投影图像重建算法对有效康普顿散射事件的康普顿散射角进行重建并对放射源成像,研究了事件顺序重建对成像分辨的影响.结果表明,错误排序事件对成像分辨的影响主要在偏离源点位置30°以内的区域,源点位置附近产生的错误重建像点在26°附近形成环状分布.使用基于沉积能量大小的康普顿边缘测试和简单比较法对事件进行排序,正确排序事件的比例提升至82%,源点位置的像点分布密度提升了47%,成像分辨得到了提升.The Compton camera for γ-ray imaging has the advantages of light weight, high detection efficiency and wide imaging energy range. However, it is difficult for the detection system to distinguish the Compton scattering event and scattering photon absorption event, which results in erroneous image reconstruction. In this paper, a simulation model of Compton camera based on a three-dimensional position-sensitive CdZnTe detector is constructed using GEANT4 program. The detection of characteristic γ-ray from a far-field 137Cs point-like source is simulated. The location of the interaction and energy deposition in the detector are recorded by means of event-by-event. The Compton scattering angle of effective Compton scattering events and imaging of the radioactive source are reconstructed using the simple back-projection algorithm which is a suitable image reconstruction algorithm for real-time imaging scenes. The effect of event sequence reconstruction on the imaging resolution and its improvement are investigated. The results show that the impact of incorrect sequence events on imaging is mainly in the region within 30° from the source position, resulting in a decrease in the density of the image point distribution at the source position. Incorrect reconstructed image points are generated near the source position and form a ring at 26°. The percentage of correctly sequenced events increase to 82% using Compton edge test and simple comparison method based on the deposited energy for sequencing events. The density of the image point distribution at the source location is improved by 47%, and the incorrect reconstruction of the image point distribution near the source location is greatly suppressed, resulting in an improved imaging resolution. The results provide support for the design of Compton camera and the optimization of image reconstruction.
-
Keywords:
- Compton camera /
- GEANT4 /
- sequence reconstruction /
- imaging resolution
-
[1] Todd R W, Nightingale J M, Everett D B 1974 Nature 251 132
[2] Gal O, Gmar M, Ivanov O P, Lainé F, Lamadie F, Le Goaller C, Mahé C, Manach E, Stepanov V E 2006 Nucl. Instrum. Methods Phys. Res. A 563 233
[3] Sun S F 2020 Acta Phys. Sin. 69 198701(in Chinese) [孙世峰 2020 物理学报 69 198701]
[4] Yang J, Tan F, Wu Y C, Gu Y Q 2016 Nucl. Electron. & Detect. Technol. 36 966(in Chinese) [杨靖, 谭放, 吴玉迟, 谷渝秋 2016 核电子学与探测技术 36 966]
[5] Strong A 1996 Space Sci. Rev 76 205
[6] Kamae T, Hanada N, Enomoto R 1988 IEEE Trans Nucl Sci 35 352
[7] Mihailescu L, Vetter K, Burks M, Hull E, Craig W 2007 Nucl. Instrum. Methods Phys. Res. A 570 89
[8] He Z, Li W, Knoll G, Wehe D, Berry J, Stahle C 1999 Nucl. Instrum. Methods Phys. Res. A 422 173
[9] Du Y, He Z, Knoll G, Wehe D, Li W 2001 Nucl. Instrum. Methods Phys. Res. A 457 203
[10] Lehner C E, He Z, Zhang F 2004 IEEE Trans Nucl Sci 51 1618
[11] Wahl C G, Kaye W, Wang W, Zhang F, Jaworski J, Boucher Y A, King A, He Z 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) p1-4
[12] Song Z Y, Yu D Y, Cai X H 2019 Acta Phys. Sin. 68 118701(in Chinese) [宋张勇, 于得洋, 蔡晓红 2019 物理学报 68 118701]
[13] Wang W, Li C L, Wu J H, Li X L 2019 Atomic Energy Sci. Tech. 53 2471(in Chinese) [王薇, 李传龙, 吴建华, 李兴隆 2019 原子能科学技术 53 2471]
[14] Zhangyong S, ZHANG B, Deyang Y 2021 Nucl. Phys. Rev. 38 215
[15] Shy D, He Z 2020 Nucl. Instrum. Methods Phys. Res. A 954 161443
[16] Xiaofeng G, Qingpei X, Dongfeng T, Yi W, Fanhua H, Yingzeng Z, Chengsheng C, Na L 2017 Appl. Radiat. Isot. 124 93
[17] Liu Y L, Fu J Q, Li Y L, Li Y J, Ma X M, Zhang L 2018 Nucl. Sci. Tech. 29 1
[18] Zhang F, Yan B, Wang X C, Jiang H, Wei X 2013 Acta Phys. Sin. 62 168702(in Chinese) [张峰, 闫镔, 汪先超, 江桦, 魏星 2013 物理学报 62 168702]
[19] Collaboration G, Agostinelli S 2003 Nucl. Instrum. Methods Phys. Res. A 506 0
[20] Tian F, Geng C, Yao Z, Wu R, Xu J, Cai F, Tang X 2022 Phys. Med. 96 140
[21] Xu D, He Z, Lehner C E, Zhang F Hard X-Ray and Gamma-Ray Detector Physics VI p144-155
计量
- 文章访问数: 33
- PDF下载量: 1
- 被引次数: 0