搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于准连续体束缚态的近红外高Q全介质超表面生物传感器

王军辉 李德琼 聂国政 詹杰 甘龙飞 陈智全 兰林锋

引用本文:
Citation:

基于准连续体束缚态的近红外高Q全介质超表面生物传感器

王军辉, 李德琼, 聂国政, 詹杰, 甘龙飞, 陈智全, 兰林锋
cstr: 32037.14.aps.74.20241752

Near-infrared high-Q all-dielectric metasurface biosensor based on quasi-bound state in continuum

WANG Junhui, LI Deqiong, NIE Guozheng, ZHAN Jie, GAN Longfei, CHEN Zhiquan, LAN Linfeng
cstr: 32037.14.aps.74.20241752
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 近年来, 连续体中的束缚态因具有极强的促进光与物质相互作用的能力, 是实现具有超高品质因子的光学共振的理想平台, 成为研究的热点. 本工作设计了一个单元胞由硅圆盘构成的全介质超表面, 在此超表面上观察到一个对称保护的束缚态, 当面内对称性被破坏时, 其可以转化为具有高质量品质因子的准束缚态. 随着背景折射率的改变, 共振峰的位置随之变化, 通过这一原理实现了一种生物折射率传感器. 由于品质因子和不对称参数成二次反比关系, 通过调节不对称参数, 品质因子也会发生改变, 从而实现传感性能的提升和调节. 经过调节, 该超表面的折射率传感灵敏度和优值分别达到162.55 nm/RIU和1711.05 RIU–1, 高于大部分的现有报道结果. 本工作的高品质因子全介质超表面设计为高灵敏度和高精度的生物检测提供了新的途径.
    In recent years, bound states in the continuum (BICs) have become a hot research topic because of their strong ability to facilitate light-matter interactions, and they are also an ideal platform for realizing optical resonances with ultra-high quality factors (Q). Nowadays, BICs have been found to exist in various photonic microstructures and nanostructures such as waveguides, gratings, and metasurfaces, among which metasurfaces have attracted much attention due to their ease of adjustment and considerable robustness. Traditional precious metal-based metasurfaces inevitably have low Q-factors due to the inherent defect of high ohmic losses. In contrast, due to lower ohmic losses, all-dielectric metasurfaces can be an excellent alternative to metallic metasurface structures. In this work, an all-dielectric metasurface is designed, with a silicon disc as the unit cell, and symmetric protected BIC (SP-BIC) is observed on the metasurface. When introducing eccentric holes to break the symmetry in the structural plane (QBIC), the SP-BIC can be transformed into a quasi-BIC, with radiation dominated by magnetic dipoles and has a high-quality Q-factor. For QBICs formed on the metasurface, the resonance wavelength is usually greatly dependent on the refractive index of the surroundings due to the strong localization of the electric field within the cell. As the refractive index of the background changes, the positions of the resonance peaks change accordingly, and identification sensing of some biological components is achieved by this principle. This metasurface-based bio-refractive index sensor is less invasive in free space and is expected to overcome the drawbacks of traditional electrochemical-based biosensing technologies, which have cumbersome detection steps and high time and material costs. In terms of sensing parameters, due to the quadratic inverse relationship between the quality factor and asymmetric parameters, by adjusting the asymmetric parameters, the quality factor will also change, thereby enhancing and adjusting the sensing performance. After adjusting, the refractive index sensing sensitivity and figure of merit of this metasurface reach 162.55 nm/RIU and 1711.05 RIU–1, respectively, which are higher than those achieved in many other existing studies. This high Q-factor all-dielectric metasurface design provides a new avenue for achieving high-sensitivity and high-precision bio-detection.
      通信作者: 聂国政, gzhnie@hnust.edu.cn ; 兰林锋, lanlinfeng@scut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62173135)、湖南省教育厅自然科学基金(批准号: 23A0454, 22A0433, 22A0435)和湖南省自然科学基金(批准号: 2022JJ30301, 2023JJ30195)资助的课题.
      Corresponding author: NIE Guozheng, gzhnie@hnust.edu.cn ; LAN Linfeng, lanlinfeng@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62173135), the Natural Science Foundation of Hunan Provincial Education Department, China (Grant Nos. 23A0454, 22A0433, 22A0435), and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2022JJ30301, 2023JJ30195).
    [1]

    Sadreev A F 2021 Rep. Prog. Phys. 84 055901Google Scholar

    [2]

    Koshelev K, Bogdanov A, Kivshar Y 2019 Sci. Bull. 64 836Google Scholar

    [3]

    Huang L J, Li G Q, Gurarslan A, Yu Y L, Kirste R, Guo W, Zhao J J, Collazo R, Sitar Z, Parsons G N, Kudenov M, Cao L Y 2016 ACS Nano 10 7493Google Scholar

    [4]

    Neumann J V, Wigner E P 1929 Phys. Z 30 465Google Scholar

    [5]

    Tong H, Liu S Y, Zhao M D, Fang K J 2020 Nat. Commun. 11 5216Google Scholar

    [6]

    Linton C M, McIver P 2007 Wave Motion 45 16Google Scholar

    [7]

    Marinica D C, Borisov A G, Shabanov S V 2008 Phys. Rev. Lett. 100 183902Google Scholar

    [8]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011 Phys. Rev. Lett. 107 183901Google Scholar

    [9]

    Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, Soljačić M 2013 Nature 499 188Google Scholar

    [10]

    Monticone F, Alù A 2014 Phys. Rev. Lett. 112 213903Google Scholar

    [11]

    Gomis-Bresco J, Artigas D, Torner L 2017 Nat. Photonics 11 232Google Scholar

    [12]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017 Nature 541 196Google Scholar

    [13]

    Doeleman H M, Monticone F, den Hollander W, Alù A, Koenderink A F 2018 Nat. Photonics 12 397Google Scholar

    [14]

    Li Z Y, Chang H N, Lai J M, Song F L, Yao Q F, Liu H Q, Ni H Q, Niu Z C, Zhang J 2023 J. Semicond. 44 082901Google Scholar

    [15]

    Salmanogli A 2023 J. Semicond. 44 052901Google Scholar

    [16]

    Bulgakov E N, Sadreev A F 2008 Phys. Rev. B 78 075105Google Scholar

    [17]

    Romano S, Zito G, Lara Yépez S N, Cabrini S, Penzo E, Coppola G, Rendina I, Mocellaark V 2019 Opt. Express 27 18776Google Scholar

    [18]

    刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛 2024 物理学报 73 047802Google Scholar

    Liu H G, Zhang X Y, Nan X Y, Zhao E G, Liu H T 2024 Acta Phys. Sin. 73 047802Google Scholar

    [19]

    Srivastava Y K, Ako R T, Gupta M, Bhaskaran M, Sriram S, Singh R 2019 Appl. Phys. Lett. 115 151105Google Scholar

    [20]

    Liu D J, Wu F, Yang R, Chen L, He X Y, Liu F 2021 Opt. Lett. 46 4370Google Scholar

    [21]

    Koshelev K, Favraud G, Bogdanov A, Kivshar Y, Fratalocchi A 2019 Nanophotonics 8 725Google Scholar

    [22]

    Lee J, Zhen B, Chua S L, Qiu W, Joannopoulos J D, Soljačić M, Shapira O 2012 Phys. Rev. Lett. 109 067401Google Scholar

    [23]

    Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Mater. 1 1

    [24]

    Xu L, Zangeneh Kamali K Z, Huang L J, Rahmani M, Smirnov A, Camacho-Morales R, Ma Y X, Zhang G Q, Woolley M, Neshev D, Miroshnichenko A E 2019 Adv. Sci. 6 1802119Google Scholar

    [25]

    Paddon P, Young J F 2000 Phys. Rev. B 61 2090Google Scholar

    [26]

    Bulgakov E N, Sadreev A F 2014 Opt. Lett. 39 5212Google Scholar

    [27]

    Barrow M, Phillips J 2020 Opt. Lett. 45 4348Google Scholar

    [28]

    Zong X Y, Li L X, Liu Y F 2021 Opt. Lett. 46 6095Google Scholar

    [29]

    Jain A, Moitra P, Koschny T, Valentine J, Soukoulis C M 2015 Adv. Opt. Mater. 3 1431Google Scholar

    [30]

    Wang Y H, Fan Y B, Zhang X D, Tang H J, Song Q H, Han J C, Xiao S M 2021 ACS Nano 15 7386Google Scholar

    [31]

    Chen Y, Zhao C, Zhang Y Z, Qiu C W 2020 Nano Lett. 20 8696Google Scholar

    [32]

    Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903Google Scholar

    [33]

    Alipour A, Farmani A, Mir A 2018 IEEE Sensors J. 18 7047Google Scholar

    [34]

    Kong Y, Cao J J, Qian W C, Liu C, Wang S Y 2018 IEEE Photonics J. 10 6804410Google Scholar

    [35]

    Bezus E A, Bykov D A, Doskolovich L L 2018 Photon. Res. 6 1084Google Scholar

    [36]

    Zeng T Y, Liu G D, Wang L L, Lin Q 2021 Opt. Express 29 40177Google Scholar

    [37]

    Al-Ani I A M, As’Ham K, Huang L, Miroshnichenko A E, Hattori H T 2021 Laser Photonics Rev. 15 2100240Google Scholar

    [38]

    Xiang J, Chen J, Lan S, Miroshnichenko A E 2020 Adv. Opt. Mater. 8 2000489Google Scholar

    [39]

    Li Z T, Panmai M, Zhou L D, Li S L, Liu S M, Zeng J H, Lan S 2023 Appl. Surf. Sci. 620 156779Google Scholar

    [40]

    Chen C, Wang J 2020 Analyst 145 1605Google Scholar

    [41]

    Sharma S, Kumari R, Varshney S K, Lahiri B 2020 Reviews in Physics 5 100044Google Scholar

    [42]

    Wang Z, Tan C H, Peng M, Yu Y Y, Zhong F, Wang P, He T, Wang Y, Zhang Z H, Xie R Z, Wang F, He S J, Zhou P, Hu W D 2024 Light. Sci. Appl. 13 277Google Scholar

    [43]

    Roingeard P, Raynal P I, Eymieux S, Blanchard E 2019 Rev. Med. Virol. 29 e2019Google Scholar

    [44]

    Caucheteur C, Villatoro J, Liu F, Loyez M, Guo T, Albert J 2022 Adv. Opt. Photon. 14 1Google Scholar

    [45]

    Polz L, Dutz F J, Maier R R J, Bartelt H, Roths J 2021 Optics & Laser Technology 134 106650

    [46]

    Valušis G, Lisauskas A, Yuan H, Knap W, Roskos H G 2021 Sensors 21 4092Google Scholar

    [47]

    Toropov N, Cabello G, Serrano M P, Gutha R R, Rafti M, Vollmer F 2021 Light Sci. Appl. 10 42Google Scholar

    [48]

    Azzouz A, Hejji L, Kim K H, Kukkar D, Souhail B, Bhardwaj N, Brown R J C, Zhang W 2022 Biosens. Bioelectron. 197 113767Google Scholar

    [49]

    Li Q, Meng J P, Li Z 2022 J. Mater. Chem. A 10 8107Google Scholar

    [50]

    Wang J, Kühne J, Karamanos T, Rockstuhl C, Maier S A, Tittl A 2021 Adv. Funct. Mater. 31 2104652Google Scholar

    [51]

    Guo L H, Zhang Z X, Xie Q, Li W X, Xia F, Wang M, Feng H, You C L, Yun M J 2023 Appl. Surf. Sci. 615 156408Google Scholar

    [52]

    https://www.lumerical.com/tcad-products/fdtd/ for FDTD method.

    [53]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173Google Scholar

    [54]

    Xu T, Wheeler M S, Nair S V, Ruda H E, Mojahedi M, Aitchison J S 2008 Appl. Phys. Lett. 93 241105Google Scholar

    [55]

    Zhen B, Hsu C W, Lu L, Stone A D, Soljačić M 2014 Phys. Rev. Lett. 113 257401Google Scholar

    [56]

    Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photonics 11 543Google Scholar

    [57]

    Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257Google Scholar

    [58]

    Yang Z J, Hao Z H, Lin H Q, Wang Q Q 2014 Nanoscale 6 4985Google Scholar

    [59]

    Hinamoto T, Fujii M 2021 OSA Continuum. 4 1640Google Scholar

    [60]

    Alaee R, Rockstuhl C, Fernandez-Corbaton I 2018 Opt. Commun. 407 17Google Scholar

    [61]

    Wang X, Duan J, Chen W, Zhou C, Liu T, Xiao S 2020 Phys. Rev. B 102 155432Google Scholar

    [62]

    Li Z, Xie M, Nie G, Wang J, Huang L 2023 J. Phys. Chem. Lett. 14 10762Google Scholar

    [63]

    Hu H, Lu W, Antonov A, Berté R, Maier S A, Tittl A 2024 Nat. Commun. 15 7050Google Scholar

    [64]

    Zhou C B, Liu G Q, Ban G X, Li S Y, Huang Q Z, Xia J S, Wang Y, Zhan M S 2018 Appl. Phys. Lett. 112 101904Google Scholar

    [65]

    Maji P S, Shukla M K, Das R 2018 Sensor. Actuat. B: Chem. 255 729Google Scholar

    [66]

    Bankapur A, Zachariah E, Chidangil S, Valiathan M, Mathur D 2010 PLOS ONE 5 e10427Google Scholar

    [67]

    Tuchin V V, Zhestkov D M, Bashkatov A N, Genina E A 2004 Opt. Express, OE 12 2966Google Scholar

    [68]

    Chen J, Yuan J, Zhang Q, Ge H M, Tang C J, Liu Y, Guo B N 2018 Opt. Mater. Express 8 342Google Scholar

    [69]

    Gao B W, Wang Y L, Zhang T Z, Xu Y, He A X, Dai L, Zhang J S 2019 ACS Nano 13 9131Google Scholar

    [70]

    Sun F, Yang W C, Du C L, Chen Y X, Fu T Y, Shi D N 2020 Plasmonics 15 949Google Scholar

    [71]

    Li H, Yu S L, Yang L, Zhao T G 2021 Optics Laser Technology 140 107072Google Scholar

    [72]

    Song S, Yu S L, Li H, Zhao T G 2022 Laser Phys. 32 025403Google Scholar

    [73]

    Zito G, Sanità G, Alulema B G, Yépez S N L, Lanzio V, Riminucci F, Cabrini S, Moccia M, Avitabile C, Lamberti A, Mocella V, Rendina I, Romano S 2021 Nanophotonics 10 4279Google Scholar

    [74]

    Liu H G, Zheng L, Ma P Z, Zhong Y, Liu B, Chen X Z, Liu H T 2019 Opt. Express 27 13252Google Scholar

  • 图 1  (a) 所提出的全介质超表面示意图, 结构参数为Px = Py = 900 nm, R = 300 nm, H = 100 nm, 玻璃衬底的厚度设定为1000 nm; (b) 在距离盘中心150 nm的固定距离内引入一个半径r可变的偏心孔以破坏结构的C2对称性; (c) 硅纳米盘超表面的前视图

    Fig. 1.  (a) Schematic of the proposed all-dielectric metasurface, the structural parameters are Px = Py = 900 nm, R = 300 nm, H = 100 nm, and the thickness of the glass substrate is set to 1000 nm; (b) an off-centered hole with variable radius r is introduced at a fixed distance of 150 nm from the center of the disc to break the C2 symmetry of the structure; (c) front view of the silicon nanodisc metasurface.

    图 2  (a) 由周期排列的硅纳米盘阵列组成的超表面示意图; (b) 计算出图(a)中周期排列的硅纳米盘阵列的光子带结构, 灰色阴影表示位于自由空间光锥下方的区域, 被困的对称保护的BIC位置用红圈标记

    Fig. 2.  (a) Schematic of a metasurface consisting of periodically aligned arrays of silicon nanodiscs; (b) calculated photonic band structure of the periodically aligned silicon nanodisk array in panel (a), grey shading indicates the region located below the free-space light cone, the location of the trapped symmetrically protected BIC is marked with a red circle.

    图 3  (a) 玻璃衬底上硅纳米盘超表面的透射谱相对于偏心孔半径的变化, SP-BIC的对应位置使用篮圈标记; (b)在r = 75 nm时的透射光谱, 以及与法诺公式拟合曲线的对比; (c) 在r = 75 nm时, 硅超表面共振的多级展开, 可以看出在共振波长位置处MD响应占绝对的主导地位; (d) Q因子和不对称参数α的关系, 为直观反映两者之间的关系采用对数坐标绘制; (e) 在r = 75 nm的情况下共振时的x-y平面电场分布图像, 红色箭头表示面内循环位移电流

    Fig. 3.  (a) Transmission spectrum of the silicon nanodisk metasurface on a glass substrate concerning the radius of the off-centered hole, the corresponding position of the SP-BIC is marked using a basket circle; (b) transmission spectrum at r = 75 nm and comparison with the fitted curve of Fano’s formula; (c) the multilevel unfolding of the silicon metasurface resonance at r = 75 nm shows that the MD response is dominant at the resonance wavelength position; (d) the relationship between the Q-factor and the asymmetry parameter α, which is plotted in logarithmic coordinates to visualize the relationship; (e) image of the x-y plane electric field distribution at resonance in the case of r = 75 nm, with the red arrows indicating the in-plane circulating displacement currents.

    图 4  (a)不同背景折射率下的透射光谱; (b)共振波长随背景折射率的变化; (c)半高宽FWHM随背景折射率的变化; (d)对共振波长随背景折射率红移变化的线性拟合, 灵敏度S和优值FOM根据拟合梯度计算, 在拟合直线中标记了多种生物成分的RI

    Fig. 4.  (a) Transmission spectra at different background refractive indices; (b) variation of resonance wavelength with background refractive index; (c) variation of half-height width FWHM with background refractive index; (d) linear fit to the variation of resonance wavelength with background refractive index redshift, the sensitivity S and the superior value FOM are calculated from the fitted gradient, the RIs of multiple biological components are labeled in the fitted straight line.

    表 1  不同机制超表面结构传感性能和本研究的对比

    Table 1.  Comparison of the sensing performance of different mechanisms of metasurface structures and the present study.

    MechanismMatericalQ-factorS/
    (nm·RIU–1)
    FOM/
    RIU–1
    Reference
    Surface
    plasmon
    Au12125028[68]
    Surface
    plasmon
    Au~4045028.8[69]
    Surface
    plasmon
    Au~81701.3[70]
    SP-BICSi3326145389[71]
    SP-BICSi8428160575[72]
    SP-BICSi3N4~103178445[73]
    Fano resonanceTiO25126186.96721[74]
    Accidental BICGaP<104135<103[39]
    SP-BICSi16506162.551711.05This work
    下载: 导出CSV
  • [1]

    Sadreev A F 2021 Rep. Prog. Phys. 84 055901Google Scholar

    [2]

    Koshelev K, Bogdanov A, Kivshar Y 2019 Sci. Bull. 64 836Google Scholar

    [3]

    Huang L J, Li G Q, Gurarslan A, Yu Y L, Kirste R, Guo W, Zhao J J, Collazo R, Sitar Z, Parsons G N, Kudenov M, Cao L Y 2016 ACS Nano 10 7493Google Scholar

    [4]

    Neumann J V, Wigner E P 1929 Phys. Z 30 465Google Scholar

    [5]

    Tong H, Liu S Y, Zhao M D, Fang K J 2020 Nat. Commun. 11 5216Google Scholar

    [6]

    Linton C M, McIver P 2007 Wave Motion 45 16Google Scholar

    [7]

    Marinica D C, Borisov A G, Shabanov S V 2008 Phys. Rev. Lett. 100 183902Google Scholar

    [8]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011 Phys. Rev. Lett. 107 183901Google Scholar

    [9]

    Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, Soljačić M 2013 Nature 499 188Google Scholar

    [10]

    Monticone F, Alù A 2014 Phys. Rev. Lett. 112 213903Google Scholar

    [11]

    Gomis-Bresco J, Artigas D, Torner L 2017 Nat. Photonics 11 232Google Scholar

    [12]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017 Nature 541 196Google Scholar

    [13]

    Doeleman H M, Monticone F, den Hollander W, Alù A, Koenderink A F 2018 Nat. Photonics 12 397Google Scholar

    [14]

    Li Z Y, Chang H N, Lai J M, Song F L, Yao Q F, Liu H Q, Ni H Q, Niu Z C, Zhang J 2023 J. Semicond. 44 082901Google Scholar

    [15]

    Salmanogli A 2023 J. Semicond. 44 052901Google Scholar

    [16]

    Bulgakov E N, Sadreev A F 2008 Phys. Rev. B 78 075105Google Scholar

    [17]

    Romano S, Zito G, Lara Yépez S N, Cabrini S, Penzo E, Coppola G, Rendina I, Mocellaark V 2019 Opt. Express 27 18776Google Scholar

    [18]

    刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛 2024 物理学报 73 047802Google Scholar

    Liu H G, Zhang X Y, Nan X Y, Zhao E G, Liu H T 2024 Acta Phys. Sin. 73 047802Google Scholar

    [19]

    Srivastava Y K, Ako R T, Gupta M, Bhaskaran M, Sriram S, Singh R 2019 Appl. Phys. Lett. 115 151105Google Scholar

    [20]

    Liu D J, Wu F, Yang R, Chen L, He X Y, Liu F 2021 Opt. Lett. 46 4370Google Scholar

    [21]

    Koshelev K, Favraud G, Bogdanov A, Kivshar Y, Fratalocchi A 2019 Nanophotonics 8 725Google Scholar

    [22]

    Lee J, Zhen B, Chua S L, Qiu W, Joannopoulos J D, Soljačić M, Shapira O 2012 Phys. Rev. Lett. 109 067401Google Scholar

    [23]

    Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Mater. 1 1

    [24]

    Xu L, Zangeneh Kamali K Z, Huang L J, Rahmani M, Smirnov A, Camacho-Morales R, Ma Y X, Zhang G Q, Woolley M, Neshev D, Miroshnichenko A E 2019 Adv. Sci. 6 1802119Google Scholar

    [25]

    Paddon P, Young J F 2000 Phys. Rev. B 61 2090Google Scholar

    [26]

    Bulgakov E N, Sadreev A F 2014 Opt. Lett. 39 5212Google Scholar

    [27]

    Barrow M, Phillips J 2020 Opt. Lett. 45 4348Google Scholar

    [28]

    Zong X Y, Li L X, Liu Y F 2021 Opt. Lett. 46 6095Google Scholar

    [29]

    Jain A, Moitra P, Koschny T, Valentine J, Soukoulis C M 2015 Adv. Opt. Mater. 3 1431Google Scholar

    [30]

    Wang Y H, Fan Y B, Zhang X D, Tang H J, Song Q H, Han J C, Xiao S M 2021 ACS Nano 15 7386Google Scholar

    [31]

    Chen Y, Zhao C, Zhang Y Z, Qiu C W 2020 Nano Lett. 20 8696Google Scholar

    [32]

    Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903Google Scholar

    [33]

    Alipour A, Farmani A, Mir A 2018 IEEE Sensors J. 18 7047Google Scholar

    [34]

    Kong Y, Cao J J, Qian W C, Liu C, Wang S Y 2018 IEEE Photonics J. 10 6804410Google Scholar

    [35]

    Bezus E A, Bykov D A, Doskolovich L L 2018 Photon. Res. 6 1084Google Scholar

    [36]

    Zeng T Y, Liu G D, Wang L L, Lin Q 2021 Opt. Express 29 40177Google Scholar

    [37]

    Al-Ani I A M, As’Ham K, Huang L, Miroshnichenko A E, Hattori H T 2021 Laser Photonics Rev. 15 2100240Google Scholar

    [38]

    Xiang J, Chen J, Lan S, Miroshnichenko A E 2020 Adv. Opt. Mater. 8 2000489Google Scholar

    [39]

    Li Z T, Panmai M, Zhou L D, Li S L, Liu S M, Zeng J H, Lan S 2023 Appl. Surf. Sci. 620 156779Google Scholar

    [40]

    Chen C, Wang J 2020 Analyst 145 1605Google Scholar

    [41]

    Sharma S, Kumari R, Varshney S K, Lahiri B 2020 Reviews in Physics 5 100044Google Scholar

    [42]

    Wang Z, Tan C H, Peng M, Yu Y Y, Zhong F, Wang P, He T, Wang Y, Zhang Z H, Xie R Z, Wang F, He S J, Zhou P, Hu W D 2024 Light. Sci. Appl. 13 277Google Scholar

    [43]

    Roingeard P, Raynal P I, Eymieux S, Blanchard E 2019 Rev. Med. Virol. 29 e2019Google Scholar

    [44]

    Caucheteur C, Villatoro J, Liu F, Loyez M, Guo T, Albert J 2022 Adv. Opt. Photon. 14 1Google Scholar

    [45]

    Polz L, Dutz F J, Maier R R J, Bartelt H, Roths J 2021 Optics & Laser Technology 134 106650

    [46]

    Valušis G, Lisauskas A, Yuan H, Knap W, Roskos H G 2021 Sensors 21 4092Google Scholar

    [47]

    Toropov N, Cabello G, Serrano M P, Gutha R R, Rafti M, Vollmer F 2021 Light Sci. Appl. 10 42Google Scholar

    [48]

    Azzouz A, Hejji L, Kim K H, Kukkar D, Souhail B, Bhardwaj N, Brown R J C, Zhang W 2022 Biosens. Bioelectron. 197 113767Google Scholar

    [49]

    Li Q, Meng J P, Li Z 2022 J. Mater. Chem. A 10 8107Google Scholar

    [50]

    Wang J, Kühne J, Karamanos T, Rockstuhl C, Maier S A, Tittl A 2021 Adv. Funct. Mater. 31 2104652Google Scholar

    [51]

    Guo L H, Zhang Z X, Xie Q, Li W X, Xia F, Wang M, Feng H, You C L, Yun M J 2023 Appl. Surf. Sci. 615 156408Google Scholar

    [52]

    https://www.lumerical.com/tcad-products/fdtd/ for FDTD method.

    [53]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173Google Scholar

    [54]

    Xu T, Wheeler M S, Nair S V, Ruda H E, Mojahedi M, Aitchison J S 2008 Appl. Phys. Lett. 93 241105Google Scholar

    [55]

    Zhen B, Hsu C W, Lu L, Stone A D, Soljačić M 2014 Phys. Rev. Lett. 113 257401Google Scholar

    [56]

    Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photonics 11 543Google Scholar

    [57]

    Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257Google Scholar

    [58]

    Yang Z J, Hao Z H, Lin H Q, Wang Q Q 2014 Nanoscale 6 4985Google Scholar

    [59]

    Hinamoto T, Fujii M 2021 OSA Continuum. 4 1640Google Scholar

    [60]

    Alaee R, Rockstuhl C, Fernandez-Corbaton I 2018 Opt. Commun. 407 17Google Scholar

    [61]

    Wang X, Duan J, Chen W, Zhou C, Liu T, Xiao S 2020 Phys. Rev. B 102 155432Google Scholar

    [62]

    Li Z, Xie M, Nie G, Wang J, Huang L 2023 J. Phys. Chem. Lett. 14 10762Google Scholar

    [63]

    Hu H, Lu W, Antonov A, Berté R, Maier S A, Tittl A 2024 Nat. Commun. 15 7050Google Scholar

    [64]

    Zhou C B, Liu G Q, Ban G X, Li S Y, Huang Q Z, Xia J S, Wang Y, Zhan M S 2018 Appl. Phys. Lett. 112 101904Google Scholar

    [65]

    Maji P S, Shukla M K, Das R 2018 Sensor. Actuat. B: Chem. 255 729Google Scholar

    [66]

    Bankapur A, Zachariah E, Chidangil S, Valiathan M, Mathur D 2010 PLOS ONE 5 e10427Google Scholar

    [67]

    Tuchin V V, Zhestkov D M, Bashkatov A N, Genina E A 2004 Opt. Express, OE 12 2966Google Scholar

    [68]

    Chen J, Yuan J, Zhang Q, Ge H M, Tang C J, Liu Y, Guo B N 2018 Opt. Mater. Express 8 342Google Scholar

    [69]

    Gao B W, Wang Y L, Zhang T Z, Xu Y, He A X, Dai L, Zhang J S 2019 ACS Nano 13 9131Google Scholar

    [70]

    Sun F, Yang W C, Du C L, Chen Y X, Fu T Y, Shi D N 2020 Plasmonics 15 949Google Scholar

    [71]

    Li H, Yu S L, Yang L, Zhao T G 2021 Optics Laser Technology 140 107072Google Scholar

    [72]

    Song S, Yu S L, Li H, Zhao T G 2022 Laser Phys. 32 025403Google Scholar

    [73]

    Zito G, Sanità G, Alulema B G, Yépez S N L, Lanzio V, Riminucci F, Cabrini S, Moccia M, Avitabile C, Lamberti A, Mocella V, Rendina I, Romano S 2021 Nanophotonics 10 4279Google Scholar

    [74]

    Liu H G, Zheng L, Ma P Z, Zhong Y, Liu B, Chen X Z, Liu H T 2019 Opt. Express 27 13252Google Scholar

  • [1] 董耀勇, 吴仪, 郑学军, 王登龙, 赵鹏. 双腔光力系统中基于连续域束缚态的超高分辨率质量传感. 物理学报, 2025, 74(13): . doi: 10.7498/aps.74.20250063
    [2] 孟祥裕, 李涛, 余彬彬, 邰永航. 探究四聚体超表面中多极准连续域束缚态的调控机制. 物理学报, 2024, 73(10): 107801. doi: 10.7498/aps.73.20240272
    [3] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [4] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器. 物理学报, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [5] 周晓霞, 陈英, 蔡力. 基于零折射率介质的超窄带光学滤波器. 物理学报, 2023, 72(17): 174205. doi: 10.7498/aps.72.20230394
    [6] 祁云平, 贾迎君, 张婷, 丁京徽, 尉净雯, 王向贤. 基于Fano共振的金属-绝缘体-金属-石墨烯纳米管混合结构动态可调折射率传感器. 物理学报, 2022, 71(17): 178101. doi: 10.7498/aps.71.20220652
    [7] 张伟, 万静, 蒙列, 罗曜伟, 郭明瑞. D型光纤与微管耦合的微流控折射率传感器. 物理学报, 2022, 71(21): 210701. doi: 10.7498/aps.71.20221137
    [8] 张翔宇, 刘会刚, 康明, 刘波, 刘海涛. 金属-介质-金属多层结构可调谐Fabry-Perot共振及高灵敏折射率传感. 物理学报, 2021, 70(14): 140702. doi: 10.7498/aps.70.20202058
    [9] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [10] 祁云平, 张婷, 郭嘉, 张宝和, 王向贤. 基于乙醇密封共振腔金属-介质-金属波导的高性能温度和折射率两用传感器. 物理学报, 2020, 69(16): 167301. doi: 10.7498/aps.69.20200405
    [11] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器. 物理学报, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [12] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤. 基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器. 物理学报, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [13] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器. 物理学报, 2017, 66(7): 074209. doi: 10.7498/aps.66.074209
    [14] 施伟华, 尤承杰, 吴静. 基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器. 物理学报, 2015, 64(22): 224221. doi: 10.7498/aps.64.224221
    [15] 陈颖, 范卉青, 卢波. 带多孔硅表面缺陷腔的半无限光子晶体Tamm态及其折射率传感机理. 物理学报, 2014, 63(24): 244207. doi: 10.7498/aps.63.244207
    [16] 李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭. 基于光纤气泡和纤芯失配的Mach-Zehnder干涉液体折射率传感器. 物理学报, 2013, 62(21): 214209. doi: 10.7498/aps.62.214209
    [17] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究. 物理学报, 2013, 62(10): 104218. doi: 10.7498/aps.62.104218
    [18] 曾志文, 刘海涛, 张斯文. 基于Fabry-Perot模型设计亚波长金属狭缝阵列光学异常透射折射率传感器. 物理学报, 2012, 61(20): 200701. doi: 10.7498/aps.61.200701
    [19] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究. 物理学报, 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [20] 刘 靖, 孙军强, 黄德修, 黄重庆, 吴 铭. 渐变折射率光量子阱对束缚态能级的调整. 物理学报, 2007, 56(4): 2281-2285. doi: 10.7498/aps.56.2281
计量
  • 文章访问数:  427
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-21
  • 修回日期:  2025-02-28
  • 上网日期:  2025-03-18

/

返回文章
返回