-
腔光力学质量传感器中分辨率是重要指标之一. 本文提出了一个基于连续域束缚态(bound states in the continuum, BIC)的超高分辨率质量传感方案. 该方案通过将光力学腔与辅助光学腔结合, 构建双腔光力系统, 利用BIC模式的高品质因子特性实现质量分辨率的显著提升. 在蓝失谐情况下, 该系统展现出类双光力诱导透明的现象, 相应的中间窄峰则表现为增益峰, 其线宽在光力协同性等于双光腔协同性加1时变为0, 对应形成BIC. 双腔光力系统中间透射峰的频率偏移量与振子频移成线性关系, 能实现对振子上吸附物的质量测量, 并且在BIC条件下其分辨率能达到ag量级. 此外, 对中间透射峰本征值的虚部和实部及其灵敏度增加因子的研究表明振子的频移对中间透射峰本征值的影响很小, 从而揭示出基于BIC的超高分辨率质量传感方案在频移影响下仍保持超高分辨率和精确的质量测量.Resolution is one of the key indicators in the cavity optomechanical mass sensing. The bound states in the continuum (BIC) enable extremely narrow linewidths, which have great potential for enhancing the resolution of cavity optomechanical mass sensors. In order to enhance the resolution of cavity optomechanical mass sensing, we propose a simple double-cavity optomechanical system under the blue-detuning condition to realize the BIC singularity, and present an ultrahigh-resolution mass sensing scheme based on BIC in this paper. By solving the linearized Heisenberg-Langevin equations, the expressions for the susceptibility and transmission rate of the system are derived. Based on the system’s susceptibility, we study the absorption characteristics of the probe field under the blue-detuning condition. The absorption spectrum of the system exhibits three peaks, among which the central narrow peak exhibits optical gain characteristics, collectively forming a phenomenon analogous to double optomechanically induced transparency. Then, analysis of the dressed-state energy-level structure reveals that the formation of the central narrow peak stems from quantum interference effects in a double-Λ-type dark-state resonance. The linewidth evolution of the quasi-BIC central narrow peak is investigated by analyzing the dependence of the real part and imaginary part of the corresponding eigenvalue on the optomechanical coupling strength. It can be found that the imaginary part of the eigenvalue for the central narrow peak becomes zero when the optomechanical cooperativity coefficient equals the double-cavity cooperativity coefficient plus one, enabling the realization of BIC. The linewidth of the central peak is ultrasmall under this BIC condition, and the shift of the transmission peak in the transmission spectrum is linearly related to the adsorbed mass. Based on these characteristics, the system under the BIC condition can achieve mass sensing with an ultrahigh resolution, with a resolution of approximately 1 ag. Meanwhile, the linewidth of the transmission peak can be suppressed below 1 Hz, which is superior to the traditional optomechanical mass sensing schemes based on four-wave mixing, photonic molecules, and plasmon polaritons. Systematic investigation of eigenvalue variations and the corresponding sensitivity enhancement factors under mechanical resonator frequency shift reveals that the real part and the imaginary part of the eigenvalue associated with the central peak exhibit negligible variations under such perturbations. This indicates that the mass sensing scheme based on BIC in the double-cavity optomechanical system can maintain ultrahigh resolution and precise mass measurement under mechanical resonator frequency shift. Our scheme provides an approach for realizing the BIC singularity in optomechanical systems, and presents a new route to improving the resolution of mass sensors based on cavity optomechanical systems.
-
Keywords:
- optomechanics /
- optomechanically induced transparency /
- mass sensing /
- bound-states in the continuum
-
图 1 双腔耦合的光力系统示意图, 光力腔a由泵浦场驱动, 其本征频率和衰减率分别为$ {\omega _{\text{a}}} $和$ \kappa $, 通过光力作用与本征频率和衰减率分别为$ {\omega _{\text{m}}} $和$ {\gamma _{\text{m}}} $的机械振子耦合, 而辅助腔c与光力腔a耦合, 耦合强度为J, 其本征频率和衰减率分别为$ {\omega _{\text{c}}} $和$ {\kappa _{\text{c}}} $, 探测场输入辅助腔c
Fig. 1. Schematic diagram of a dual-cavity coupled optomechanical system, where the optomechanical cavity with the frequency $ {\omega _{\text{a}}} $ and dissipation rate $ \kappa $ is driven by the pumping field and couples to the mechanical resonator with the frequency $ {\omega _{\text{m}}} $ and dissipation rate $ {\gamma _{\text{m}}} $ by the optomechanical interaction. The auxiliary cavity c with the frequency $ {\omega _{\text{c}}} $ and dissipation rate $ {\kappa _{\text{c}}} $ is coupled with the optomechanical cavity a with the coupling strength J, the probe field is input into the auxiliary cavity.
图 2 ${\varepsilon _{\text{T}}}$的实部${Re} ({\varepsilon _{\text{T}}})$随探测场失谐量变化曲线, 其中$ \kappa = {\kappa _{\text{c}}} = 6.4 \, {\text{MHz}} $, $ {\omega _{\text{m}}} = 2{\pi} \times 10.3\, {\text{MHz}} $, $ {\gamma _{\text{m}}} = 2{\pi} \times $$ 0.83\, {\text{kHz}} $, $ m = 10\, {\text{ng}} $, $ {G_{\text{m}}} = 0.003\, {\omega _{\text{m}}} $和$ {g_1} = 0.1\, {\omega _{\text{m}}} $ [49,61]
Fig. 2. Real part ${Re} ({\varepsilon _{\text{T}}})$ of ${\varepsilon _{\text{T}}}$ as a function of the probe field detuning, where $ \kappa = {\kappa _{\text{c}}} = 6.4 \, {\text{MHz}} $, $ {\omega _{\text{m}}} = 2{\pi} \times $$ 10.3\, {\text{MHz}} $, $ {\gamma _{\text{m}}} = 2{\pi} \times 0.83\, {\text{kHz}} $, $ m = 10\, {\text{ng}} $, $ {G_{\text{m}}} = $ $ 0.003\, {\omega _{\text{m}}} $, and $ {g_1} = 0.1\, {\omega _{\text{m}}} $[49,61].
图 3 (a)双腔光力学系统的能级结构示意图及其(b)缀饰态解释示意图, 能级$ \left| 0 \right\rangle $, $ \left| 1 \right\rangle $, $ \left| 2 \right\rangle $和$ \left| 3 \right\rangle $分别表示$ \left| {{n_{\text{a}}}, \, {n_{\text{c}}}, \, m} \right\rangle $, $ \left| {{n_{\text{a}}}, \, {n_{\text{c}}}, \, m + 1} \right\rangle $, $ \left| {{n_{\text{a}}}, \, {n_{\text{c}}} + 1, \, m} \right\rangle $和$ \left| {{n_{\text{a}}} + 1, \, {n_{\text{c}}}, \, m} \right\rangle $, 缀饰态$ \left| \pm \right\rangle $为$ {{(\left| 2 \right\rangle \pm \left| 3 \right\rangle )} {/ } {\sqrt 2 }} $, 其中$ {n_{\text{a}}} $和$ {n_{\text{c}}} $分别表示光力学腔中光模a和辅助腔中光模c的光子数, m表示机械模b的声子数
Fig. 3. (a) Energy level structure diagram of the double-cavity optomechanical system and (b) the corresponding dressed-states explanation diagram, the energy level $ \left| 0 \right\rangle $, $ \left| 1 \right\rangle $, $ \left| 2 \right\rangle $, and $ \left| 3 \right\rangle $ represent $ \left| {{n_{\text{a}}}, \, {n_{\text{c}}}, \, m} \right\rangle $, $ \left| {{n_{\text{a}}}, \, {n_{\text{c}}}, \, m + 1} \right\rangle $, $ \left| {{n_{\text{a}}}, \, {n_{\text{c}}} + 1, \, m} \right\rangle $, and $ \left| {{n_{\text{a}}} + 1, \, {n_{\text{c}}}, \, m} \right\rangle $, respectively. The dressed-states $ \left| \pm \right\rangle $ are expressed as $ {{(\left| 2 \right\rangle \pm \left| 3 \right\rangle )} {/ } {\sqrt 2 }} $. Here, $ {n_{\text{a}}} $ and $ {n_{\text{c}}} $ represent the photon numbers of optical mode a in the optomechanical cavity and optical mode c in the auxiliary cavity, and m represents the phonon number of mechanical mode b.
图 5 (a)在吸附物的质量为0 pg, 10 pg, 15 pg和20 pg时, 系统的透射光谱图, 参数取$ G_{\text{m}}^{} = 0.001{\omega _{\text{m}}} $; (b)吸附物质量为10 pg时, 在不同光力耦合强度下的透射光谱, 其他参数与图2相同
Fig. 5. (a) Transmission spectrum of the system when the mass of the adsorbate is 0 pg, 10 pg, 15 pg, and 20 pg, with $ G_{\text{m}}^{} = 0.001{\omega _{\text{m}}} $; (b) transmission spectrum for an adsorbate mass of 10 pg under different optomechanical coupling strengths, other parameters are the same as in Fig. 2.
图 6 (a) ${Re} ({\lambda '_0})$和(b) ${Im} ({\lambda '_0})$随频移$\delta {\omega _{\text{m}}}$的变化曲线, 参数取$ G_{\text{m}}^{} = \sqrt {{{(4 J_{}^2{\gamma _{\text{m}}} - \kappa {\kappa _{\text{c}}}{\gamma _{\text{m}}})} {/ } {4{\kappa _{\text{c}}}}}} $, 其余参数与图2一致
Fig. 6. Curves of (a) ${Re} ({\lambda '_0})$ and (b) ${Im} ({\lambda '_0})$ as function of $\delta {\omega _{\text{m}}}$ with $ G_{\text{m}}^{} = \sqrt {{{(4 J_{}^2{\gamma _{\text{m}}} - \kappa {\kappa _{\text{c}}}{\gamma _{\text{m}}})} {/ } {4{\kappa _{\text{c}}}}}} $, other parameters are the same as in Fig. 2.
图 7 在不同的腔衰减率下灵敏度增加因子(a) ${\eta _{{\text{real}}}}$和(b) ${\eta _{{\text{imag}}}}$以及不同的腔耦合强度下灵敏度增加因子(c) ${\eta _{{\text{real}}}}$和(d) ${\eta _{{\text{imag}}}}$随频移$\delta {\omega _m}$的变化曲线, 参数取$ G_{\text{m}}^{} = \sqrt {{{(4 J_{}^2{\gamma _{\text{m}}} - \kappa {\kappa _{\text{c}}}{\gamma _{\text{m}}})} {/ } {4{\kappa _{\text{c}}}}}} $, 其余参数与图2一致
Fig. 7. Curves of sensitivity enhancement factor (a) ${\eta _{{\text{real}}}}$ and (b) ${\eta _{{\text{imag}}}}$ as a function of $\delta {\omega _{\text{m}}}$ under different cavity decay rates, and curves of sensitivity enhancement factor (c) ${\eta _{{\text{real}}}}$ and (d) ${\eta _{{\text{imag}}}}$ as a function of $\delta {\omega _{\text{m}}}$ under different cavity coupling strengths with $ G_{\text{m}}^{} = \sqrt {{{(4 J_{}^2{\gamma _{\text{m}}} - \kappa {\kappa _{\text{c}}}{\gamma _{\text{m}}})} {/ } {4{\kappa _{\text{c}}}}}} $. Other parameters are the same as in Fig. 2.
-
[1] Kanari-Naish L A, Clarke J, Qvarfort S, Vanner M R 2022 Quantum Sci. Technol. 7 035012
Google Scholar
[2] Barzanjeh S, Xuereb A, Gröblacher S, Paternostro M, Regal C A, Weig E M 2022 Nat. Phys. 18 15
Google Scholar
[3] Guo J K, Wu J L, Cao J, Zhang S, Su S L 2024 Phys. Rev. A 110 043510
Google Scholar
[4] Li B B, Ou L, Lei Y, Liu Y C 2021 Nanophotonics 10 2799
Google Scholar
[5] Pujol‐Vila F, Güell‐Grau P, Nogués J, Alvarez M, Sepúlveda B 2023 Adv. Funct. Mater. 33 2213109
Google Scholar
[6] Zhang S D, Wang J, Zhang Q, Jiao Y F, Zuo Y L, Özdemir Ş K, Qiu C W, Nori F, Jing H 2024 Opt. Quantum 2 222
Google Scholar
[7] Zhang Y, Hines A, Wilson D J, Guzman F 2023 Phys. Rev. Appl. 19 054004
Google Scholar
[8] Clarke J, Neveu P, Khosla K E, Verhagen E, Vanner M R 2023 Phys. Rev. Lett. 131 053601
Google Scholar
[9] Li J J, Zhu K D 2013 Phys. Rep. 525 223
Google Scholar
[10] Xia J, Qiao Q F, Zhou G C, Chau F S, Zhou G Y 2020 Appl. Sci. 10 7080
Google Scholar
[11] He Y T, Feng Z J, Jing Y W, Xiong W, Chen X L, Kuang T F, Xiao G Z, Tan Z Q, Luo H 2023 Opt. Express 31 37507
Google Scholar
[12] Subhash S, Das S, Dey T N, Li Y, Davuluri S 2023 Opt. Express 31 177
Google Scholar
[13] He Q, Bai Y F, Badshah F, Li L P, Qi H Q 2024 Opt. Quantum Electron. 56 1140
Google Scholar
[14] Zhang Q, Du S M, Yang S W, Wang Q S, Zhang J, Wang D D, Li Y M 2024 Opt. Express 32 13873
Google Scholar
[15] Liu Y Z, Jiang J F, Liu K, Wang S, Niu P P, Wang T, Xu T H, Zhang X Z, Liu T G 2024 J. Lightwave Technol. 42 5753
Google Scholar
[16] Loyez M, Adolphson M, Liao J, Yang L 2023 ACS Sens. 8 2440
Google Scholar
[17] Liu F, Alaie S, Leseman Z C, Hossein-Zadeh M 2013 Opt. Express 21 19555
Google Scholar
[18] Grau A, Mercadé L, Ortiz R, Martínez A 2025 Opt. Express 33 1458
Google Scholar
[19] Li T, Wang W, Yi X X 2021 Phys. Rev. A 104 013521
Google Scholar
[20] He Y, Chen Q 2024 Laser Phys. 34 055206
Google Scholar
[21] Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69
Google Scholar
[22] 严晓波, 杨柳, 田雪冬, 刘一谋, 张岩 2014 物理学报 63 204201
Google Scholar
Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201
Google Scholar
[23] Xiong H, Wu Y 2018 Appl. Phys. Rev. 5 031305
Google Scholar
[24] 谢宝豪, 陈华俊, 孙轶 2023 物理学报 72 154203
Google Scholar
Xie B H, Chen H J, Sun Y 2023 Acta Phy. Sin. 72 154203
Google Scholar
[25] Wang Q, Li W J 2017 Int. J. Theor. Phys. 56 1346
Google Scholar
[26] Li Z Y, You X, Li Y M, Liu Y C, Peng K C 2018 Phys. Rev. A 97 033806
Google Scholar
[27] Shang L, Chen B, Xing L L, Chen J B, Xue H B, Guo K X 2021 Chin. Phys. B 30 054209
Google Scholar
[28] Liu J H, Yu Y F, Wu Q, Wang J D, Zhang Z M 2021 Opt. Express 29 12266
Google Scholar
[29] Zhang W, Shen H Z 2024 Phys. Rev. A 109 033701
Google Scholar
[30] Li J J, Zhu K D 2012 Appl. Phys. Lett. 101 141905
Google Scholar
[31] Jiang C, Cui Y, Zhu K D 2014 Opt. Express 22 13773
Google Scholar
[32] He Y 2015 Appl. Phys. Lett. 106 121905
Google Scholar
[33] Chen H J, Chen C Z, Li Y, Fang X W, Tang X D 2017 Opt. Commun. 382 73
Google Scholar
[34] Liu S P, Liu B, Wang J F, Zhao L L, Yang W X 2021 J. Appl. Phys. 129 084504
Google Scholar
[35] Yang Y, Wang Y P, Rao J W, Gui Y S, Yao B M, Lu W, Hu C M 2020 Phys. Rev. Lett. 125 147202
Google Scholar
[36] Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231
Google Scholar
[37] 毕千惠, 彭于娟, 陈润, 王漱明 2023 光学学报 43 1623008
Google Scholar
Bi Q H, Peng Y J, Chen R, Wang S M 2023 Acta Opt. Sin. 43 1623008
Google Scholar
[38] Dell’Olio F 2025 Photonics 12 48
Google Scholar
[39] Thapa D K, Biswas S 2025 Mater. Horiz. published online, doi: 10.1039/D5MH00413F
[40] Wang Y Q, Qi Y P, Zhou Z H, Li Z X, Wang X X 2024 Phys. Scr. 99 105533
Google Scholar
[41] Yang S, Zhang X, Liu J, Feng H L, Meng H Y, Jia Y, Gao Y C 2025 Phys. Lett. A 547 130540
Google Scholar
[42] Li J S, Xue Y Y, Guo F L 2024 Opt. Commun. 554 130225
Google Scholar
[43] Du X, Xie S X, Nan H X, Sun S Y, Shen W W, Yang J C, Guan X 2023 Photonics 10 980
Google Scholar
[44] Peng J, Lin X, Yan X N, Yan X, Hu X F, Yao H Y, Liang L J, Ma G H 2024 Nanomaterials 14 799
Google Scholar
[45] Liu Z C, Guo T B, Tan Q, Hu Z P, Sun Y W, Fan H X, Zhang Z, Jin Y, He S L 2023 Nano. Lett. 23 10441
Google Scholar
[46] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛 2024 物理学报 73 047802
Google Scholar
Liu H G, Zhang X Y, Nan X Y, Zhao E G, Liu H T 2024 Acta. Phys. Sin. 73 047802
Google Scholar
[47] Qian Z, Zhao M M, Hou B P, Zhao Y H 2017 Opt. Express 25 33097
Google Scholar
[48] Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394
Google Scholar
[49] Zhang J, Peng B, Özdemir Ş K, Pichler K, Krimer D O, Zhao G, Nori F, Liu Y X, Rotter S, Yang L 2018 Nat. Photonics 12 479
Google Scholar
[50] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391
Google Scholar
[51] Chang Y, Shi T, Liu Y X, Sun C P, Nori F 2011 Phys. Rev. A 83 063826
Google Scholar
[52] Fu C B, Yan X B, Gu K H, Cui C L, Wu J H, Fu T D 2013 Phys. Rev. A 87 053841
Google Scholar
[53] Zhang X Y, Zhou Y H, Guo Y Q, Yi X X 2018 Phys. Rev. A 98 033832
Google Scholar
[54] Mirza I M, Ge W, Jing H 2019 Opt. Express 27 25515
Google Scholar
[55] Hao H, Kuzyk M C, Ren J, Zhang F, Duan X, Zhou L, Zhang T, Gong Q, Wang H, Gu Y 2019 Phys. Rev. A 100 023820
Google Scholar
[56] Li S J, Yang X D, Cao X M, Zhang C H, Xie C D, Wang H 2008 Phys. Rev. Lett. 101 073602
Google Scholar
[57] Kou J, Wan R G, Kuang S Q, Jiang L, Zhang L, Kang Z H, Wang H H, Gao J Y 2011 Opt. Commun. 284 1603
Google Scholar
[58] Wang H, Gu X, Liu Y X, Miranowicz A, Nori F 2014 Phys. Rev. A 90 023817
Google Scholar
[59] Lukin M D, Yelin S F, Fleischhauer M, Scully M O 1999 Phys. Rev. A 60 3225
Google Scholar
[60] Liu C P, Gong S Q, Cheng D C, Fan X J, Xu Z Z 2006 Phys. Rev. A 73 025801
Google Scholar
[61] Zhang D W, Zheng L L, Wang M, Zhou Y, Lü X Y 2024 Phys. Rev. A 109 023529
Google Scholar
[62] Chen H J 2020 Laser Phys. 30 115203
Google Scholar
[63] Liu J, Zhu K D 2018 Photonics Res. 6 867
Google Scholar
[64] Aleebrahim E, Harouni M B, Amooghorban E 2022 Phys. Rev. A 105 062609
Google Scholar
计量
- 文章访问数: 194
- PDF下载量: 10
- 被引次数: 0