-
针对空天一体化发展中临近空间飞行器在卫星拒止下的自主导航难题, 脉冲星导航作为一种极具前景的解决方案, 其可否应用取决于临近空间X射线的传输特性. 本文首先分析了电离层内X射线与带电离子、自由电子等物质的相互作用, 给出了反射、散射及吸收作用对1—100 keV能段X射线的质量衰减系数. 然后基于NRLMSIS 2.1模型和IRI-2020模型建立了X射线在临近空间传输的分层模型, 给出了1—30 keV的X射线在60—100 km的传输效率和流量获取方法. 最后分析了传输效率在不同季节与纬度、昼夜等条件下的变化规律, 阐述了传输效率的分布特征. 结果表明, 以南极中山站为例, 10 keV能量的X射线, 在75 km以上时传输效率均高于83.96%. 本研究为X射线脉冲星导航在临近空间的应用研究提供了数据支撑.In the context of the development of aerospace integration, the near-space aircraft is facing the challenge of autonomous navigation under the satellite denial conditions. Pulsar navigation is a promising solution, and its applicability depends on the transmission characteristics of X-rays in near-space. Firstly, in this paper the interactions between X-rays and charged ions, free electrons and other substances in the ionosphere are analyzed, and the mass attenuation coefficients of reflection, scattering and absorption to X-rays with energy of 1–100 keV are presented. Then, based on the NRLMSIS 2.1 model and IRI-2020 model, a stratified model for X-ray transmission in nearspace is established, and the transmission efficiency and flux acquisition method for 1–30 keV X-rays in 60–100 km are obtained. Finally, the variations in transmission efficiency under the conditions of different seasons, latitudes and days and nights are analyzed, and the distribution characteristics of transmission efficiency are described. Analysis results are shown below. 1) Photoelectric absorption plays a dominant role, while coherent scattering and incoherent scattering have relatively minor influence and the reflection effect is extremely weak and negligible for X-rays applicable to pulsar navigation. 2) The transmission efficiency exhibits a significant positive correlation with X-ray energy and altitude, and it usually exceeds 80% when the X-ray energy exceeds 10 keV. 3) The transmission efficiency exhibits distinct annual variation characteristics in the Arctic region and Antarctic region and subtle semi-annual variation characteristics in the equatorial region. It peaks in the winter hemisphere and reaches a minimum in the summer hemisphere, with the amplitude of its fluctuations in polar regions far exceeding that in the equatorial region. Additionally it also shows the periodic daily variations with daytime decreasing and nighttime increasing, and the amplitude of diurnal fluctuations being no more than 0.82%. The results indicate that the transmission efficiency peaks in the early morning of the Antarctic winter for 10 keV X-rays at 75 km. Taking Antarctic China Zhongshan Station for example, it can reach up to 93.57%, which means a 9.61% increase over the summer minimum of 83.96%. This study provides crucial data for supporting the applications of X-ray pulsar navigation in nearspace.
-
Keywords:
- X-ray /
- near space /
- transmission characteristics /
- pulsar
-
-
[1] 聂万胜, 罗世彬, 丰松江, 庄逢辰 2012 国防科技大学学报 34 107
Google Scholar
Nie W S, Luo S B, Feng S J, Zhuang F C 2012 J. Natl. Univ. Defense Technol. 34 107
Google Scholar
[2] 南子寒, 刘大禹, 董明, 梁文宁, 赵雪薇, 马伊琳, 关瑶 2024 航空学报 45 730782
Nan Z H, Liu D Y, Dong M, Liang W N, Zhang X W, Ma Y L, Guan Y 2024 Acta Aeronaut. Astronaut. Sin. 45 730782
[3] 杨君琳, 蒋崇文, 祝明, 王自力 2024 中国工程科学 26 128
Google Scholar
Yang J L, Jiang C W, Zhu M, Wang Z L 2024 Strategic Study of CAE 26 128
Google Scholar
[4] Han W, Wang·N, ·Wang J B, Yuan·J P, ·He D L 2019 Astrophys. Space Sci. 364 48
Google Scholar
[5] Kašpárek T, Chudý P 2024 Aerospace 11 839
Google Scholar
[6] 郑伟, 王禹淞, 姜坤, 王奕迪 2024 航空学报 45 028843
Zheng W, Wang Y S, Wang Y D 2024 Acta Aeronaut. Astronaut. Sin. 45 028843
[7] 闫林丽, 葛明玉, 庹攸隶, 周庆勇, 叶文韬, 郑世界, 韩大炜 2023 航空学报 44 526588
Yan L L, Ge M Y, Tuo Y L, Zhou Q Y, Ye W T, Zheng S J, Han D W 2023 Acta Aeronaut. Astronaut. Sin. 44 526588
[8] Han W, Wang J B, Wang N, Sun G W, He D L 2020 Exp. Astron. 49 43
Google Scholar
[9] Deng Z L, Li X D, Gao Z F, Shao Y 2021 Astrophys. J. 909 174
Google Scholar
[10] 魏子卿 2025 测绘学报 54 207
Google Scholar
Wei Z Q 2025 Acta Geod. Cartogr. Sin. 54 207
Google Scholar
[11] Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 MNRAS 456 55
Google Scholar
[12] Wang W, Xu R X 2025 Universe 11 11
Google Scholar
[13] Rigoselli M, Mereghetti S, Halpern J P, Gotthelf E V, Bassa C G 2024 Astrophys. J. 976 228
Google Scholar
[14] 石永强, 李连升, 左富昌, 陈建武, 梅志武 2023 导航定位与授时 10 1
Shi Y Q, Li L S, Zuo F C, Chen J W, Mei Z W 2023 Navig. Positioning Timing 10 1
[15] Wen Z G, Yuen R, Wang N, Tu Z Y, Yan Z, Yuan J P, Yan W M, Chen J L, Wang H G, Shen Z Q, Wang Z, Yang W J, Duan X F, Zhang Y F, Wang Y B, Mao J W 2021 Astrophys. J. 918 57
Google Scholar
[16] Deng Z L, Gao Z F, Li X D, Shao Y 2020 Astrophys. J. 892 4
Google Scholar
[17] Gao Z F, Wang N, Shan H, Li X D, Wang W 2017 Astrophys. J. 849 19
Google Scholar
[18] 裴松鹏, 张晓婉 2023 科技视界 14 13
Google Scholar
Pei S P, Zhang X W 2023 Sci. Technol. Vision 14 13
Google Scholar
[19] He D L, Yuan J P, Wen Z G, Sun G W, Ma W L, Zhu D J, Wang H 2025 Astron. Nachr. https://doi.org/10.1002/asna.20250023
[20] 姜坤, 焦文海, 郝晓龙, 刘莹, 王奕迪, 张新源, 国际 2023 航空学报 44 526611
Jiang K, Jiao W H, He X L, Liu Y, Wang Y D, Zhang X Y, Guo J 2023 Acta Aeronaut. Astronaut. Sin. 44 526611
[21] Wen Z G, Yuan J P, Wang N, Li D, Chen J L, Wang P, Wu Q D, Yan W M, Yuen R, Wang Z, Tedila H M, Wang H G, Zhu W W, Niu J R, Miao C C, Xue M Y, Duan X F, Xiang B B, He D L 2022 Astrophys. J. 929 587
[22] Li B P, Gao Z F 2023 Astron. Nachr. 344 e20220111
[23] 冉山川, 杨子宁, 李思成, 解天昊, 马辛 2024 上海航天(中英文) 41 238
Ran S C, Yang Z N, Li S C, Xie T H, Ma X 2024 Aerosp. Shanghai (Chin. & Engl. ). 41 238
[24] 韩孟纳, 童明雷 2023 物理学报 72 079701
Google Scholar
Han M N, Tong M L 2023 Acta Phys. Sin. 72 079701
Google Scholar
[25] 苏剑宇, 方海燕, 包为民, 孙海峰, 赵良 2022 物理学报 71 229701
Google Scholar
Su J Y, Fang H Y, Bao W M, Sun H F, Zhao L 2022 Phys. Sin. 71 229701
Google Scholar
[26] Wen Z G, Wang N, Yuan J P, Yan W M, Manchester R N, Yuen R, Gajjar V 2016 A& A 592 A127
[27] 余道淳, 李海涛, 李保权, 刘亚宁 2023 空间科学学报 43 661
Google Scholar
Yu D C, Li H T, Li B Q, Liu Y N 2023 Chin. J. Space Sci. 43 661
Google Scholar
[28] Henke B L, Gullikson E M, Davis J C 1993 At. Data Nucl. Data Tables 54 181
Google Scholar
[29] Gendreau K https://www.techbriefs.com/component/content/article/2591-dr-keith-gendreau-physicist-goddard-space-flight-center-greenbelt-md [2025-3-17]
[30] Li H, Tang X B, Hang S, Liu Y P, Chen D 2017 J. Appl. Phys 121 123101
Google Scholar
[31] 周围 2020 硕士学位论文 (南京: 南京航空航天大学)
Zhou W 2020 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics
[32] 孙海峰 2015 博士学位论文 (西安: 西安电子科技大学)
Sun H F 2015 Ph. D. Dissertation (Xi’an: Xidian University
[33] 孙海峰, 包为民, 方海燕, 李小平 2014 物理学报 63 069701
Google Scholar
Sun H F, Bao W M, Fang H Y, Li X P 2014 Acta Phys. Sin. 63 069701
Google Scholar
[34] Shen L R, Li X P, Sun H F, Fang H Y, Xue M F, Zhu J P 2016 China Satellite Navigation Conference (CSNC) Changsha, Hunan, China, May 18-20,2016 p611
[35] 周庆勇, 张健康, 贾小林, 闫林丽, 樊少娟 2023 全球定位系统 48 63
Google Scholar
Zhou Q Y, Zhang J K, Jia X L, Yan L L, Fan S J 2023 GNSS World of China 48 63
Google Scholar
[36] 牛有田, 张安琪, 赵歌歌, 丁玉玲, 曹渊, 朴金龙 2025 河南师范大学学报(自然科学版) 53 151
Niu Y T, Zhang A Q, Zhao G G, Ding Y L, Cao Y, Piao J L 2025 J. Henan Normal Univ. (Nat. Sci. Ed. ) 53 151
[37] 乐新安 2008 博士学位论文 (武汉: 中国科学院研究生院(武汉物理与数学研究所))
Yue X A 2008 Ph. D. Dissertation (Wuhan: Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences
[38] 马保科 2013 博士学位论文 (西安: 西安电子科技大学)
Ma B K 2013 Ph. D. Dissertation (Xi’an: Xidian University
[39] 王严 2021 硕士学位论文 (北京: 中国电子科技集团公司电子科学研究院)
Wang Y 2021 M. S. Thesis (Beijing: China Academy of Electronics and Information Technology
[40] 陈必焰 2012 硕士学位论文 (长沙: 中南大学)
Chen B Y 2012 M. S. Thesis (Changsha: Central South University
[41] 李泽众 2023 博士学位论文 (合肥: 中国科学技术大学)
Li Z Z 2023 Ph. D. Dissertation (Hefei: University of Science and Technology of China
[42] 牛月娟 2024 硕士学位论文 (郑州: 郑州轻工业大学)
Niu Y J 2024 M. S. Thesis (Zhengzhou: Zhengzhou University of Light Industry
[43] 张雪薇 2022 博士学位论文 (杭州: 浙江大学)
Zhao X W 2022 Ph. D. Dissertation (Hangzhou: Zhejiang University
[44] 虞超, 沈国柱, 顾斌, 程国生 2013 南京信息工程大学学报(自然科学版) 5 379
Yu C, Shen G Z, Gu B, Cheng G S 2013 J. Nanjing Univ. Inf. (Sci Technol. ) 5 379
[45] 邹伟, 侯德亭, 邢朝伟, 邵颖 2006 无线电工程 36 50
Google Scholar
Zou W, Hou D T, Xing C W Shao Y 2006 Radio Eng. 36 50
Google Scholar
[46] 牟欢 2017 博士学位论文 (北京: 中国科学院大学)
Mou H 2017 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences
[47] 苏桐 2020 博士学位论文 (北京: 中国科学院大学)
Su T 2020 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences
[48] 代波 2010 大学物理 29 30
Google Scholar
Dai B 2010 Coll. Phys. 29 30
Google Scholar
[49] 周日峰 2003 硕士学位论文 (重庆: 重庆大学)
Zhou R F 2003 M. S. Thesis (Chongqing: Chongqing University
[50] 欧阳建明, 马燕云, 邵福球, 邹德滨 2012 物理学报 61 135
Google Scholar
Ouyang J M, Ma Y Y, Shao F Q, Zou D B 2012 Acta Phys. Sin. 61 135
Google Scholar
[51] Berger M J, Hubbell J H, Seltzer S M, Chang J, Coursey J S, Sukumar R, Zucker D S, Olsen K https://www.nist.gov/pml/xcom-photon-cross-sections-database [2025-3-17]
[52] Churazov E, Sazonov S, Sunyaev R, Revnivtsev M 2008 MNRAS 385 719
Google Scholar
[53] Bilitza D, Pezzopane M, Truhlik V, Altadill D, Reinisch B W, Pignalberi A 2022 Rev. Geophys. 60 e2022RG000792
Google Scholar
[54] Servan-Schreiber N, Aggarwal M, Huang Y, Kang M, Shaker A, Bilitza D 2025 Adv. Space Res. 75 4217
Google Scholar
[55] Emmert J T, Jones M Jr, Siskind D E, Drob D P, Picone J M, Stevens M H, Bailey S M, Bender S, Bernath P F, Funke B, Hervig M E, Pérot K 2022 J. Geophys. Res. Space Phys. 127 e2022JA030896
Google Scholar
[56] Briesmeister J F https://api.semanticscholar.org/CorpusID:123810257 [2025-3-17]
[57] 王禹, 覃国秀, 张小辉 2023 沈阳工程学院学报(自然科学版) 19 1
Wang Y, Tan G X, Zhang X H 2023 J. Shenyang Inst. Eng. (Nat. Sci. ) 19 1
[58] Sheikh S I 2005 Ph. D. Dissertation (Maryland: University of Maryland
[59] Su J Y, Fang H Y, Bao W M, Sun H F, Shen L R, Zhao L 2020 Acta Astronaut. 166 93
Google Scholar
[60] 翁利斌 2019 博士学位论文 (合肥: 中国科学技术大学)
Weng L B 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China
[61] 李波, 崔瑞飞, 翁利斌 2024 空间科学学报 44 60
Google Scholar
Li B, Cui R F, Weng L B 2024 Chin. J. Space Sci. 44 60
Google Scholar
[62] 贺龙松, 刘瑞源, 刘顺林, 刘勇华 2000 地球物理学报 43 289
Google Scholar
He L S, Liu R Y, Liu S L, Liu Y H 2000 Chin. J. Geophys. 43 289
Google Scholar
[63] 高敬帆, 赵海生, 徐朝辉, 许正文, 冯杰, 李辉, 马征征 2018 电波科学学报 33 701
Gao J F, Zhao H S, Xu Z H, Xu Z W, Feng J, Li H, Ma Z Z 2018 Chin. J. Radio Sci. 33 701
[64] 刘立波, 陈一定, 张瑞龙, 乐会军, 张辉 2021 地球与行星物理论评 52 647
Liu L B, Chen Y D, Zhang R L, Le H J, Zhang H 2021 Rev. Geophys. Planet. Phys. 52 647
[65] 曾丹丹, 万田, 李帅辉 2022 力学学报 54 2984
Google Scholar
Zeng D D, Wan T, Li S H 2022 Chin. J. Theor. Appl. Mech 54 2984
Google Scholar
计量
- 文章访问数: 221
- PDF下载量: 2
- 被引次数: 0