搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临近空间X射线脉冲星信号传输特性分析

王正品 徐天悦 方海燕 张泽葳 何熊文 陈朝基 钟兆丰

引用本文:
Citation:

临近空间X射线脉冲星信号传输特性分析

王正品, 徐天悦, 方海燕, 张泽葳, 何熊文, 陈朝基, 钟兆丰

Analysis of transmission characteristics of X-ray pulsar signal in near-space

WANG Zhengpin, XU Tianyue, FANG Haiyan, ZHANG Zewei, HE Xiongwen, CHEN Chaoji, ZHONG Zhaofeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 针对空天一体化发展中临近空间飞行器在卫星拒止下的自主导航难题, 脉冲星导航作为一种极具前景的解决方案, 其可否应用取决于临近空间X射线的传输特性. 本文首先分析了电离层内X射线与带电离子、自由电子等物质的相互作用, 给出了反射、散射及吸收作用对1—100 keV能段X射线的质量衰减系数. 然后基于NRLMSIS 2.1模型和IRI-2020模型建立了X射线在临近空间传输的分层模型, 给出了1—30 keV的X射线在60—100 km的传输效率和流量获取方法. 最后分析了传输效率在不同季节与纬度、昼夜等条件下的变化规律, 阐述了传输效率的分布特征. 结果表明, 以南极中山站为例, 10 keV能量的X射线, 在75 km以上时传输效率均高于83.96%. 本研究为X射线脉冲星导航在临近空间的应用研究提供了数据支撑.
    In the context of the development of aerospace integration, the near-space aircraft is facing the challenge of autonomous navigation under the satellite denial conditions. Pulsar navigation is a promising solution, and its applicability depends on the transmission characteristics of X-rays in near-space. Firstly, in this paper the interactions between X-rays and charged ions, free electrons and other substances in the ionosphere are analyzed, and the mass attenuation coefficients of reflection, scattering and absorption to X-rays with energy of 1–100 keV are presented. Then, based on the NRLMSIS 2.1 model and IRI-2020 model, a stratified model for X-ray transmission in nearspace is established, and the transmission efficiency and flux acquisition method for 1–30 keV X-rays in 60–100 km are obtained. Finally, the variations in transmission efficiency under the conditions of different seasons, latitudes and days and nights are analyzed, and the distribution characteristics of transmission efficiency are described. Analysis results are shown below. 1) Photoelectric absorption plays a dominant role, while coherent scattering and incoherent scattering have relatively minor influence and the reflection effect is extremely weak and negligible for X-rays applicable to pulsar navigation. 2) The transmission efficiency exhibits a significant positive correlation with X-ray energy and altitude, and it usually exceeds 80% when the X-ray energy exceeds 10 keV. 3) The transmission efficiency exhibits distinct annual variation characteristics in the Arctic region and Antarctic region and subtle semi-annual variation characteristics in the equatorial region. It peaks in the winter hemisphere and reaches a minimum in the summer hemisphere, with the amplitude of its fluctuations in polar regions far exceeding that in the equatorial region. Additionally it also shows the periodic daily variations with daytime decreasing and nighttime increasing, and the amplitude of diurnal fluctuations being no more than 0.82%. The results indicate that the transmission efficiency peaks in the early morning of the Antarctic winter for 10 keV X-rays at 75 km. Taking Antarctic China Zhongshan Station for example, it can reach up to 93.57%, which means a 9.61% increase over the summer minimum of 83.96%. This study provides crucial data for supporting the applications of X-ray pulsar navigation in nearspace.
  • 图 1  康普顿散射光子能量与入射光子能量之比随入射光子能量的变化

    Fig. 1.  Relationship between the ratio of Compton scattered photon energy to incident photon energy and incident photon energy.

    图 2  康普顿散射截面与入射光子能量的关系 (a) 总散射截面; (b) 纯散射截面

    Fig. 2.  Relationship between Compton scattering cross section and incident photon energy: (a) Total scattering cross section; (b) pure scattering cross section.

    图 3  纯散射截面与总散射截面比值

    Fig. 3.  Ratio of pure scattering cross section to total scattering cross section.

    图 4  光电吸收截面随X射线能量变化 (a) 氧原子; (b) 氮原子

    Fig. 4.  Photoelectric absorption cross section changes with X-ray energy: (a) Oxygen atom; (b) nitrogen atom.

    图 5  N, O, NO光电吸收质量衰减系数随X射线能量变化曲线

    Fig. 5.  Variation curves of mass attenuation coefficient of N, O and NO atoms with X-ray energy.

    图 6  不同相互作用质量衰减系数随X射线能量变化曲线

    Fig. 6.  Variation curves of mass attenuation coefficient of different interactions with X-ray energy.

    图 7  基于临近空间电离层和大气数据的分层模型

    Fig. 7.  Stratified model based on ionospheric and atmospheric data in near space.

    图 8  X射线光子流量在临近空间传输特性

    Fig. 8.  Transmission characteristics of X-ray photon flux in near space.

    图 9  两极及赤道地区大气密度、电子密度的季节性特征 (a) 大气密度; (b) 电子密度

    Fig. 9.  Seasonal characteristics of atmospheric density and electron density in polar and equatorial regions: (a) Atmospheric density; (b) electron density.

    图 10  两极及赤道地区75 km传输效率的季节性特征

    Fig. 10.  Seasonal characteristics of transmission efficiency at 75 km in polar and equatorial regions.

    图 11  两极及赤道地区大气密度、电子密度的昼夜变化 (a) 大气密度; (b) 电子密度

    Fig. 11.  Diurnal variation of atmospheric density and electron density at the poles and equator: (a) Atmospheric density; (b) electron density.

    图 12  两极及赤道地区75 km传输效率的昼夜变化

    Fig. 12.  Diurnal variation of transmission efficiency at 75 km in polar and equatorial regions.

    表 1  导航常用X射线脉冲星流量[58,59]

    Table 1.  Flux of X-ray pulsars commonly used in navigation[58,59].

    脉冲星B0531+21B1821-24B1937+21B1509-58B0833-45
    源流量/(photons·s–1·cm–2)1.54×10–11.93×10–44.99×10–51.62×10–21.60×10–3
    背景流量
    /(photons·s–1·cm–2)
    1.3861.74×10–34.5×10–45.00×10–35.00×10–3
    下载: 导出CSV
  • [1]

    聂万胜, 罗世彬, 丰松江, 庄逢辰 2012 国防科技大学学报 34 107Google Scholar

    Nie W S, Luo S B, Feng S J, Zhuang F C 2012 J. Natl. Univ. Defense Technol. 34 107Google Scholar

    [2]

    南子寒, 刘大禹, 董明, 梁文宁, 赵雪薇, 马伊琳, 关瑶 2024 航空学报 45 730782

    Nan Z H, Liu D Y, Dong M, Liang W N, Zhang X W, Ma Y L, Guan Y 2024 Acta Aeronaut. Astronaut. Sin. 45 730782

    [3]

    杨君琳, 蒋崇文, 祝明, 王自力 2024 中国工程科学 26 128Google Scholar

    Yang J L, Jiang C W, Zhu M, Wang Z L 2024 Strategic Study of CAE 26 128Google Scholar

    [4]

    Han W, Wang·N, ·Wang J B, Yuan·J P, ·He D L 2019 Astrophys. Space Sci. 364 48Google Scholar

    [5]

    Kašpárek T, Chudý P 2024 Aerospace 11 839Google Scholar

    [6]

    郑伟, 王禹淞, 姜坤, 王奕迪 2024 航空学报 45 028843

    Zheng W, Wang Y S, Wang Y D 2024 Acta Aeronaut. Astronaut. Sin. 45 028843

    [7]

    闫林丽, 葛明玉, 庹攸隶, 周庆勇, 叶文韬, 郑世界, 韩大炜 2023 航空学报 44 526588

    Yan L L, Ge M Y, Tuo Y L, Zhou Q Y, Ye W T, Zheng S J, Han D W 2023 Acta Aeronaut. Astronaut. Sin. 44 526588

    [8]

    Han W, Wang J B, Wang N, Sun G W, He D L 2020 Exp. Astron. 49 43Google Scholar

    [9]

    Deng Z L, Li X D, Gao Z F, Shao Y 2021 Astrophys. J. 909 174Google Scholar

    [10]

    魏子卿 2025 测绘学报 54 207Google Scholar

    Wei Z Q 2025 Acta Geod. Cartogr. Sin. 54 207Google Scholar

    [11]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 MNRAS 456 55Google Scholar

    [12]

    Wang W, Xu R X 2025 Universe 11 11Google Scholar

    [13]

    Rigoselli M, Mereghetti S, Halpern J P, Gotthelf E V, Bassa C G 2024 Astrophys. J. 976 228Google Scholar

    [14]

    石永强, 李连升, 左富昌, 陈建武, 梅志武 2023 导航定位与授时 10 1

    Shi Y Q, Li L S, Zuo F C, Chen J W, Mei Z W 2023 Navig. Positioning Timing 10 1

    [15]

    Wen Z G, Yuen R, Wang N, Tu Z Y, Yan Z, Yuan J P, Yan W M, Chen J L, Wang H G, Shen Z Q, Wang Z, Yang W J, Duan X F, Zhang Y F, Wang Y B, Mao J W 2021 Astrophys. J. 918 57Google Scholar

    [16]

    Deng Z L, Gao Z F, Li X D, Shao Y 2020 Astrophys. J. 892 4Google Scholar

    [17]

    Gao Z F, Wang N, Shan H, Li X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [18]

    裴松鹏, 张晓婉 2023 科技视界 14 13Google Scholar

    Pei S P, Zhang X W 2023 Sci. Technol. Vision 14 13Google Scholar

    [19]

    He D L, Yuan J P, Wen Z G, Sun G W, Ma W L, Zhu D J, Wang H 2025 Astron. Nachr. https://doi.org/10.1002/asna.20250023

    [20]

    姜坤, 焦文海, 郝晓龙, 刘莹, 王奕迪, 张新源, 国际 2023 航空学报 44 526611

    Jiang K, Jiao W H, He X L, Liu Y, Wang Y D, Zhang X Y, Guo J 2023 Acta Aeronaut. Astronaut. Sin. 44 526611

    [21]

    Wen Z G, Yuan J P, Wang N, Li D, Chen J L, Wang P, Wu Q D, Yan W M, Yuen R, Wang Z, Tedila H M, Wang H G, Zhu W W, Niu J R, Miao C C, Xue M Y, Duan X F, Xiang B B, He D L 2022 Astrophys. J. 929 587

    [22]

    Li B P, Gao Z F 2023 Astron. Nachr. 344 e20220111

    [23]

    冉山川, 杨子宁, 李思成, 解天昊, 马辛 2024 上海航天(中英文) 41 238

    Ran S C, Yang Z N, Li S C, Xie T H, Ma X 2024 Aerosp. Shanghai (Chin. & Engl. ). 41 238

    [24]

    韩孟纳, 童明雷 2023 物理学报 72 079701Google Scholar

    Han M N, Tong M L 2023 Acta Phys. Sin. 72 079701Google Scholar

    [25]

    苏剑宇, 方海燕, 包为民, 孙海峰, 赵良 2022 物理学报 71 229701Google Scholar

    Su J Y, Fang H Y, Bao W M, Sun H F, Zhao L 2022 Phys. Sin. 71 229701Google Scholar

    [26]

    Wen Z G, Wang N, Yuan J P, Yan W M, Manchester R N, Yuen R, Gajjar V 2016 A& A 592 A127

    [27]

    余道淳, 李海涛, 李保权, 刘亚宁 2023 空间科学学报 43 661Google Scholar

    Yu D C, Li H T, Li B Q, Liu Y N 2023 Chin. J. Space Sci. 43 661Google Scholar

    [28]

    Henke B L, Gullikson E M, Davis J C 1993 At. Data Nucl. Data Tables 54 181Google Scholar

    [29]

    Gendreau K https://www.techbriefs.com/component/content/article/2591-dr-keith-gendreau-physicist-goddard-space-flight-center-greenbelt-md [2025-3-17]

    [30]

    Li H, Tang X B, Hang S, Liu Y P, Chen D 2017 J. Appl. Phys 121 123101Google Scholar

    [31]

    周围 2020 硕士学位论文 (南京: 南京航空航天大学)

    Zhou W 2020 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics

    [32]

    孙海峰 2015 博士学位论文 (西安: 西安电子科技大学)

    Sun H F 2015 Ph. D. Dissertation (Xi’an: Xidian University

    [33]

    孙海峰, 包为民, 方海燕, 李小平 2014 物理学报 63 069701Google Scholar

    Sun H F, Bao W M, Fang H Y, Li X P 2014 Acta Phys. Sin. 63 069701Google Scholar

    [34]

    Shen L R, Li X P, Sun H F, Fang H Y, Xue M F, Zhu J P 2016 China Satellite Navigation Conference (CSNC) Changsha, Hunan, China, May 18-20,2016 p611

    [35]

    周庆勇, 张健康, 贾小林, 闫林丽, 樊少娟 2023 全球定位系统 48 63Google Scholar

    Zhou Q Y, Zhang J K, Jia X L, Yan L L, Fan S J 2023 GNSS World of China 48 63Google Scholar

    [36]

    牛有田, 张安琪, 赵歌歌, 丁玉玲, 曹渊, 朴金龙 2025 河南师范大学学报(自然科学版) 53 151

    Niu Y T, Zhang A Q, Zhao G G, Ding Y L, Cao Y, Piao J L 2025 J. Henan Normal Univ. (Nat. Sci. Ed. ) 53 151

    [37]

    乐新安 2008 博士学位论文 (武汉: 中国科学院研究生院(武汉物理与数学研究所))

    Yue X A 2008 Ph. D. Dissertation (Wuhan: Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences

    [38]

    马保科 2013 博士学位论文 (西安: 西安电子科技大学)

    Ma B K 2013 Ph. D. Dissertation (Xi’an: Xidian University

    [39]

    王严 2021 硕士学位论文 (北京: 中国电子科技集团公司电子科学研究院)

    Wang Y 2021 M. S. Thesis (Beijing: China Academy of Electronics and Information Technology

    [40]

    陈必焰 2012 硕士学位论文 (长沙: 中南大学)

    Chen B Y 2012 M. S. Thesis (Changsha: Central South University

    [41]

    李泽众 2023 博士学位论文 (合肥: 中国科学技术大学)

    Li Z Z 2023 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [42]

    牛月娟 2024 硕士学位论文 (郑州: 郑州轻工业大学)

    Niu Y J 2024 M. S. Thesis (Zhengzhou: Zhengzhou University of Light Industry

    [43]

    张雪薇 2022 博士学位论文 (杭州: 浙江大学)

    Zhao X W 2022 Ph. D. Dissertation (Hangzhou: Zhejiang University

    [44]

    虞超, 沈国柱, 顾斌, 程国生 2013 南京信息工程大学学报(自然科学版) 5 379

    Yu C, Shen G Z, Gu B, Cheng G S 2013 J. Nanjing Univ. Inf. (Sci Technol. ) 5 379

    [45]

    邹伟, 侯德亭, 邢朝伟, 邵颖 2006 无线电工程 36 50Google Scholar

    Zou W, Hou D T, Xing C W Shao Y 2006 Radio Eng. 36 50Google Scholar

    [46]

    牟欢 2017 博士学位论文 (北京: 中国科学院大学)

    Mou H 2017 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [47]

    苏桐 2020 博士学位论文 (北京: 中国科学院大学)

    Su T 2020 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [48]

    代波 2010 大学物理 29 30Google Scholar

    Dai B 2010 Coll. Phys. 29 30Google Scholar

    [49]

    周日峰 2003 硕士学位论文 (重庆: 重庆大学)

    Zhou R F 2003 M. S. Thesis (Chongqing: Chongqing University

    [50]

    欧阳建明, 马燕云, 邵福球, 邹德滨 2012 物理学报 61 135Google Scholar

    Ouyang J M, Ma Y Y, Shao F Q, Zou D B 2012 Acta Phys. Sin. 61 135Google Scholar

    [51]

    Berger M J, Hubbell J H, Seltzer S M, Chang J, Coursey J S, Sukumar R, Zucker D S, Olsen K https://www.nist.gov/pml/xcom-photon-cross-sections-database [2025-3-17]

    [52]

    Churazov E, Sazonov S, Sunyaev R, Revnivtsev M 2008 MNRAS 385 719Google Scholar

    [53]

    Bilitza D, Pezzopane M, Truhlik V, Altadill D, Reinisch B W, Pignalberi A 2022 Rev. Geophys. 60 e2022RG000792Google Scholar

    [54]

    Servan-Schreiber N, Aggarwal M, Huang Y, Kang M, Shaker A, Bilitza D 2025 Adv. Space Res. 75 4217Google Scholar

    [55]

    Emmert J T, Jones M Jr, Siskind D E, Drob D P, Picone J M, Stevens M H, Bailey S M, Bender S, Bernath P F, Funke B, Hervig M E, Pérot K 2022 J. Geophys. Res. Space Phys. 127 e2022JA030896Google Scholar

    [56]

    Briesmeister J F https://api.semanticscholar.org/CorpusID:123810257 [2025-3-17]

    [57]

    王禹, 覃国秀, 张小辉 2023 沈阳工程学院学报(自然科学版) 19 1

    Wang Y, Tan G X, Zhang X H 2023 J. Shenyang Inst. Eng. (Nat. Sci. ) 19 1

    [58]

    Sheikh S I 2005 Ph. D. Dissertation (Maryland: University of Maryland

    [59]

    Su J Y, Fang H Y, Bao W M, Sun H F, Shen L R, Zhao L 2020 Acta Astronaut. 166 93Google Scholar

    [60]

    翁利斌 2019 博士学位论文 (合肥: 中国科学技术大学)

    Weng L B 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [61]

    李波, 崔瑞飞, 翁利斌 2024 空间科学学报 44 60Google Scholar

    Li B, Cui R F, Weng L B 2024 Chin. J. Space Sci. 44 60Google Scholar

    [62]

    贺龙松, 刘瑞源, 刘顺林, 刘勇华 2000 地球物理学报 43 289Google Scholar

    He L S, Liu R Y, Liu S L, Liu Y H 2000 Chin. J. Geophys. 43 289Google Scholar

    [63]

    高敬帆, 赵海生, 徐朝辉, 许正文, 冯杰, 李辉, 马征征 2018 电波科学学报 33 701

    Gao J F, Zhao H S, Xu Z H, Xu Z W, Feng J, Li H, Ma Z Z 2018 Chin. J. Radio Sci. 33 701

    [64]

    刘立波, 陈一定, 张瑞龙, 乐会军, 张辉 2021 地球与行星物理论评 52 647

    Liu L B, Chen Y D, Zhang R L, Le H J, Zhang H 2021 Rev. Geophys. Planet. Phys. 52 647

    [65]

    曾丹丹, 万田, 李帅辉 2022 力学学报 54 2984Google Scholar

    Zeng D D, Wan T, Li S H 2022 Chin. J. Theor. Appl. Mech 54 2984Google Scholar

  • [1] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究. 物理学报, doi: 10.7498/aps.71.20211411
    [2] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究*. 物理学报, doi: 10.7498/aps.70.20211411
    [3] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞. 高能脉冲C6+离子束激发Ni靶的K壳层X射线. 物理学报, doi: 10.7498/aps.66.143401
    [4] 侯兴民, 章程, 邱锦涛, 顾建伟, 王瑞雪, 邵涛. 大气压管板结构纳秒脉冲放电中时域X射线研究. 物理学报, doi: 10.7498/aps.66.105204
    [5] 王璐, 许录平, 张华, 罗楠. 基于S变换的脉冲星辐射脉冲信号检测. 物理学报, doi: 10.7498/aps.62.139702
    [6] 范志强, 盛峥, 万黎, 石汉青, 江宇. 临近空间气象火箭探测资料精度的综合评估. 物理学报, doi: 10.7498/aps.62.199601
    [7] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹. CSR上C6+脉冲束激发Au靶的X射线辐射. 物理学报, doi: 10.7498/aps.62.173401
    [8] 周少彤, 李军, 黄显宾, 蔡红春, 张思群, 李晶, 段书超, 周荣国. 阳加速器钛丝X箍缩光源辐射特性实验研究. 物理学报, doi: 10.7498/aps.61.165202
    [9] 刘保军, 蔡理. 临近空间单粒子串扰的解析模型. 物理学报, doi: 10.7498/aps.61.196103
    [10] 章程, 邵涛, 牛铮, 张东东, 王珏, 严萍. 大气压尖板电极结构重复频率纳秒脉冲放电中X射线辐射特性研究. 物理学报, doi: 10.7498/aps.61.035202
    [11] 谢强, 许录平, 张华, 罗楠. X射线脉冲星累积轮廓建模及信号辨识. 物理学报, doi: 10.7498/aps.61.119701
    [12] 蒙志君, 王立峰, 吕明云, 武哲. 曲率对有限曲面狭缝阵列传输特性的影响. 物理学报, doi: 10.7498/aps.60.017301
    [13] 张华, 许录平. 脉冲星脉冲轮廓累积的最小熵方法. 物理学报, doi: 10.7498/aps.60.039701
    [14] 张华, 许录平, 谢强, 罗楠. 基于Bayesian估计的X射线脉冲星微弱信号检测. 物理学报, doi: 10.7498/aps.60.049701
    [15] 李建勋, 柯熙政. 基于循环平稳信号相干统计量的脉冲星周期估计新方法. 物理学报, doi: 10.7498/aps.59.8304
    [16] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟. 物理学报, doi: 10.7498/aps.58.2397
    [17] 蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力. 临近空间大气中子环境的仿真研究. 物理学报, doi: 10.7498/aps.58.6659
    [18] 张永鹏, 刘国治, 邵浩, 杨占峰, 宋志敏, 林郁正. 一维漂移空间内强流电子束的稳态传输特性. 物理学报, doi: 10.7498/aps.58.6973
    [19] 谢振华, 许录平, 倪广仁. 基于双谱的脉冲星累积脉冲轮廓时间延迟测量. 物理学报, doi: 10.7498/aps.57.6683
    [20] 陈宝振. X射线在毛细导管中传输的理论研究. 物理学报, doi: 10.7498/aps.49.1933
计量
  • 文章访问数:  221
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-15
  • 修回日期:  2025-04-03
  • 上网日期:  2025-04-24

/

返回文章
返回