搜索

x
中国物理学会期刊

具有( 2 m+1 )次非线性项和时空变系数的广义( n+1 )维薛定谔方程的相似变换和精确解

CSTR: 32037.14.aps.74.20250225

Similarity transformations and exact solutions of the generalized ( n+1 )-dimensional Schrödinger equation with ( 2 m+1 )th order nonlinear terms and spatiotemporally varying coefficients

CSTR: 32037.14.aps.74.20250225
PDF
HTML
导出引用
  • 薛定谔型方程是一类十分重要的微分方程. 高维及变系数薛定谔型方程的研究具有一定的价值和意义. 本文利用相似变换推导了( n+1 )维( 2m+1 )次变系数非线性薛定谔方程的一类新的孤子解, 给出了系数之间满足的关系. 并利用定态薛定谔方程的解, 得到了( n+1 )维( 2m+1 )次变系数非线性薛定谔方程的明暗孤子解. 最后, 对于特殊的情况, 给出了明暗孤立子解的图像, 并系统分析了孤子解的空间结构和传播特性.

     

    Schrödinger-type equations represent a fundamentally important class of differential equations. Research on high-dimensional variable-coefficient Schrödinger-type equations as important theoretical and practical value, providing critical insights into the dynamics of complex wave phenomena. In this paper, we employ similarity transformations to derive a novel class of soliton solutions for the (n + 1)-dimensional (2m + 1)th-order variable-coefficient nonlinear Schrödinger equation. By extending similarity transformations from lower-dimensional to higher dimensionnal equations, we establish the intrinsic relationships among the equation’s coefficients. Furthermore, utilizing the solutions of the stationary Schrödinger equation and using the balancing-coefficient method, we construct both bright and dark soliton solutions for the (n + 1)-dimensional (2m + 1)th-order variable-coefficient nonlinear Schrödinger equation. Finally, for specific cases, we present graphical representations of the bright and dark soliton solutions and conduct a systematic analysis of their spatial structures and propagation characteristics. Our results indicate that bright solitons exhibit a single-peak structure, while dark solitons form trough-like profiles, further confirming the stability of soliton wave propagation.

     

    目录

    /

    返回文章
    返回