搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气扰动密度场光散射信号成像仿真方法

王宇瑶 孙晓兵 崔文煜 胡远 于长平 宋波 徐玲玲 余海啸 韦祎晨 王宇轩 姚顺

引用本文:
Citation:

大气扰动密度场光散射信号成像仿真方法

王宇瑶, 孙晓兵, 崔文煜, 胡远, 于长平, 宋波, 徐玲玲, 余海啸, 韦祎晨, 王宇轩, 姚顺
cstr: 32037.14.aps.74.20250249

Imaging simulation of light scattering signals in atmospheric disturbance density fields

WANG Yuyao, SUN Xiaobing, CUI Wenyu, HU Yuan, YU Changping, SONG Bo, XU Lingling, YU Haixiao, WEI Yichen, WANG Yuxuan, YAO Shun
cstr: 32037.14.aps.74.20250249
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 空中飞行器在飞行过程中对邻近大气环境造成扰动, 形成明显有别于自然背景的大气密度空间分布特征. 本文提出基于大气扰动密度场远距离感知飞行器存在的构想, 针对性地设计了对大气扰动区域散射光进行三维层析成像的探测模式, 以及扰动光信号产生、传递和响应的全过程仿真链路. 重点解决了在短曝光条件和激光脉冲二次散射作用下的成像调制传递函数估算问题, 构建了飞行器扰动密度场的光散射回波成像仿真模型. 模拟了大气扰动密度场对主动光源的散射回波信号图像和与无扰动背景的差异图像, 并在此基础上讨论了不同系统参数下的仿真结果. 该模型可以为探测系统设计提供分析工具, 并为相关探测技术的发展提供基础.
    During flight operations, aircraft induces atmospheric disturbances in the surrounding environment through aerodynamic interactions between its geometric configuration and ambient air medium, resulting in spatially distinct density distribution characteristics that are significantly different from natural background scenario. Considering the positive correlation between atmospheric medium density and light scattering intensity, theoretical analysis shows that detecting the light scattering intensity signals in disturbed regions can map density distributions, thereby extracting the features of aircraft-induced atmospheric disturbance density fields. Based on the concept of long-range aircraft detection through atmospheric disturbance density field characterization, a novel remote sensing method for aircraft detection is proposed in this work. Specifically, a three-dimensional tomographic imaging detection mode for scattered light in an atmospheric disturbance region is designed, and a comprehensive simulation framework covering the entire process of disturbance optical signal generation, transmission, and response is constructed. The study accomplishes the following tasks: 1) the critical challenges in estimating the imaging modulation transfer function under short-exposure conditions subjected to laser pulse secondary scattering effects are resolved, and a photon scattering echo imaging simulation model for aircraft-induced disturbance density fields is established; 2) the scattering echo signal images from active light sources in disturbed density fields and the differential images obtained under disturbed background and non-disturbed background are simulated, with simulation results under varying system parameters analyzed systematically. The research demonstrates that this simulation model can be used to optimize detection system parameters, develop signal processing methods, and assess long-range detection capabilities, thus providing both theoretical foundations and technical support for advancing aircraft detection technologies based on density disturbance characteristics.
      通信作者: 崔文煜, cuiwenyu@aiofm.ac.cn ; 胡远, yhu@imech.ac.cn
    • 基金项目: 国家重点研发计划 (批准号: 2022YFF0711703) 资助的课题.
      Corresponding author: CUI Wenyu, cuiwenyu@aiofm.ac.cn ; HU Yuan, yhu@imech.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFF0711703).
    [1]

    任维贺, 张月, 苏云, 张学敏, 邓红艳, 柳祎 2022 红外与激光工程 51 20210843Google Scholar

    Ren W H, Zhang Y, Su Y, Zhang X M, Deng H Y, Liu Y 2022 Infrared and Laser Engineering 51 20210843Google Scholar

    [2]

    Pan W J, Jiang Y Q, Zhang Y Q 2023 Sustainability 15 6391Google Scholar

    [3]

    Wei Z Q, Li X C, Liu F 2022 Int. J. Aeronaut. Space Sci. 23 406Google Scholar

    [4]

    Liu Z R, Mao J M 2003 Chin. Phys. Lett. 20 206Google Scholar

    [5]

    潘卫军, 栾天, 康贤彪, 张庆宇, 任杰, 张强 2019 空气动力学学报 37 511Google Scholar

    Pan, W J, Luan, T, Kang, X, Zhang Q Y, Ren, J, Zhang, Q 2019 Acta Aerodyn. Sin. 37 511Google Scholar

    [6]

    Garnet M, Altman A 2009 J. Aircr. 46 263Google Scholar

    [7]

    Burnham D C, Hallock J N 2013 J. Aircr. 50 82Google Scholar

    [8]

    Köpp F, Rahm S, Smalikho I 2004 J. Atmos. Oceanic Technol. 21 194Google Scholar

    [9]

    Yoshikawa E, Matayoshi N 2017 AIAA J. 55 2269Google Scholar

    [10]

    Gao H, Li J B, Chan P W, Hon K K, Wang X S 2018 Opt. Express 26 16377Google Scholar

    [11]

    Marshall R E, Mudukutore A, Wissel V L H, Myers T 1998 Three-Centimeter Doppler Radar Observations of Wingtip-Generated Wake Vortices in Clear Air Report No. NASA/ CR-97-206260

    [12]

    武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 物理学报 62 184702Google Scholar

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702Google Scholar

    [13]

    易仕和, 陈植 2015 物理学报 64 199401Google Scholar

    Yi S, Chen Z 2015 Acta Phys. Sin. 64 199401Google Scholar

    [14]

    Sun Q, Cui W, Li Y H, Cheng B Q, Jin D, Li J 2014 Chin. Phys. B 23 075210Google Scholar

    [15]

    Heineck J T, Banks D W, Smith N T, Schairer E T, Bean P S, Robillos T 2021 AIAA J. 59 11Google Scholar

    [16]

    Heineck J T, Banks D W, Schairer E T, Haering E A Jr., Bean P S 2016 AIAA Flight Testing Conference Washington, DC, USA, June 13–17, 2016 p11

    [17]

    李新亮 2015 航空学报 36 147Google Scholar

    Li X L 2015 Acta Aeronaut. ET Astronaut. Sin. 36 147Google Scholar

    [18]

    Yu C P, Hu R N, Yan Z, Li X L 2022 J. Fluid Mech. 940 A18Google Scholar

    [19]

    Hu R N, Li X L, Yu C P 2023 J. Fluid Mech. 972 A14Google Scholar

    [20]

    Hu R N, Li X L, Yu C P 2022 J. Fluid Mech. 946 A19Google Scholar

    [21]

    卞正富 2002 测量学 (北京: 中国农业出版社) 第17页

    Bian Z F 2002 Surveying (Beijing: China Agriculture Press) p17

    [22]

    黄金 2024 硕士学位论文 (西安: 西安理工大学)

    Huang J 2024 M. S. Dissertation (Xi’an: Xi’an University of Technology

    [23]

    崔洪鲁, 闫召爱, 张炳炎, 郭文杰, 胡雄 2020 空间科学学报 40 1046Google Scholar

    Cui H L, Yan Z, Zhang B Y, Guo W J, Hu X 2020 Chin. J. Space Sci. 40 1046Google Scholar

    [24]

    陈胜哲 2014 博士学位论文 (北京: 北京理工大学)

    Chen S Z 2014 Ph. D. Dissertation (Beijing: Beijing Institute of Technology

    [25]

    刘厚通, 陈良富, 苏林 2011 物理学报 60 064204Google Scholar

    Liu H T, Chen L F, Su L 2011 Acta Phys. Sin. 60 064204Google Scholar

    [26]

    白珺, 袁艳, 苏丽娟, 孙成明 2012 现代电子技术 35 124Google Scholar

    Bai J, Yuan Y, Su L J, Sun C M 2012 Modern Electron. Tech. 35 124Google Scholar

    [27]

    马雪莲 2015 光子学报 44 0601003Google Scholar

    Ma X L 2015 Acta Photonica Sin. 44 0601003Google Scholar

    [28]

    陈武喝 1999 光电子·激光 10 375Google Scholar

    Chen W H 1999 J. Optoelectron. ·Laser 10 375Google Scholar

  • 图 1  大气扰动密度场云图分布

    Fig. 1.  Distribution of atmospheric disturbance density field cloud map.

    图 2  扰动密度场侧视剖面图(以y = –1 m为例)

    Fig. 2.  Side view profile of disturbance density field (taking y = –1 m as an example).

    图 3  扰动密度场垂向扩散分布曲线(以正视图中x = 50 m为例)

    Fig. 3.  Vertical diffusion distribution curves of disturbance density field (taking x = 50 m in the front view as an example).

    图 4  扰动密度场纵向扩散分布曲线(以侧视图中y = –1 m为例)

    Fig. 4.  Longitudinal diffusion distribution curves of disturbance density field (taking y = –1 m in the side view as an example).

    图 5  扰动密度场横向扩散分布曲线(以俯视图中z = 10 m为例)

    Fig. 5.  Lateral diffusion distribution curves of disturbance density field (taking z = 10 m in the top view as an example).

    图 6  基于大气扰动密度场的探测原理示意图

    Fig. 6.  Schematic diagram of detection principle based on atmospheric disturbance density field.

    图 7  大气扰动密度场光散射回波信号成像仿真模型框架和工作流程示意图

    Fig. 7.  Schematic diagram of the framework and workflow of the imaging simulation model for light scattering echo signals in atmospheric disturbance density field.

    图 8  两种坐标系的关系

    Fig. 8.  Relationship between the two coordinate systems.

    图 9  高差校正示意图[21]

    Fig. 9.  Schematic diagram of height difference correction[21].

    图 10  二次散射作用计算原理示意图

    Fig. 10.  Schematic diagram of the calculation principle of secondary scattering effect.

    图 11  二次散射作用贡献比重计算流程图

    Fig. 11.  Flowchart of the calculation of contribution ratio of secondary scattering effect.

    图 12  邻近光线二次散射贡献比随距离的变化

    Fig. 12.  Variation curve of the contribution ratio of secondary scattering from adjacent light rays with distance.

    图 13  大气扰动场光散射场回波信号成像示意图

    Fig. 13.  Schematic diagram of echo signal imaging of light scattering field in atmospheric disturbance field.

    图 14  经短曝光大气MTF作用后的成像效果

    Fig. 14.  Imaging effect after short-exposure atmospheric MTF.

    图 15  大气扰动密度场光散射层析成像探测结果图 (a), (c), (e)散射回波信号; (b), (d), (f) 与无扰动背景的差异

    Fig. 15.  Tomographic imaging detection results of light scattering in atmospheric disturbance density field: (a), (c), (e) Scattering echo signals; (b), (d), (f) the differential images obtained by comparing disturbed and non-disturbed background.

    图 16  不同波长的成像探测结果图 (a), (c), (e)散射回波信号; (b), (d), (f)与无扰动背景的差异

    Fig. 16.  Imaging detection results at different wavelengths: (a), (c), (e) Scattering echo signals; (b), (d), (f) the differential images obtained by comparing disturbed and non-disturbed backgrounds.

    图 17  不同轴向分辨率的成像探测结果图 (a), (c), (e)散射回波信号; (b), (d), (f)与无扰动背景的差异

    Fig. 17.  Imaging detection results at different axial resolutions: (a), (c), (e) Scattering echo signals; (b), (d), (f) the differential images obtained by comparing disturbed and non-disturbed backgrounds.

    图 18  不同成像分辨率的成像探测结果图 (a), (c), (e)散射回波信号; (b), (d), (f)与无扰动背景的差异

    Fig. 18.  Imaging detection results at different spatial resolutions: (a), (c), (e) Scattering echo signals; (b), (d), (f) the differential images obtained by comparing disturbed and non-disturbed backgrounds.

  • [1]

    任维贺, 张月, 苏云, 张学敏, 邓红艳, 柳祎 2022 红外与激光工程 51 20210843Google Scholar

    Ren W H, Zhang Y, Su Y, Zhang X M, Deng H Y, Liu Y 2022 Infrared and Laser Engineering 51 20210843Google Scholar

    [2]

    Pan W J, Jiang Y Q, Zhang Y Q 2023 Sustainability 15 6391Google Scholar

    [3]

    Wei Z Q, Li X C, Liu F 2022 Int. J. Aeronaut. Space Sci. 23 406Google Scholar

    [4]

    Liu Z R, Mao J M 2003 Chin. Phys. Lett. 20 206Google Scholar

    [5]

    潘卫军, 栾天, 康贤彪, 张庆宇, 任杰, 张强 2019 空气动力学学报 37 511Google Scholar

    Pan, W J, Luan, T, Kang, X, Zhang Q Y, Ren, J, Zhang, Q 2019 Acta Aerodyn. Sin. 37 511Google Scholar

    [6]

    Garnet M, Altman A 2009 J. Aircr. 46 263Google Scholar

    [7]

    Burnham D C, Hallock J N 2013 J. Aircr. 50 82Google Scholar

    [8]

    Köpp F, Rahm S, Smalikho I 2004 J. Atmos. Oceanic Technol. 21 194Google Scholar

    [9]

    Yoshikawa E, Matayoshi N 2017 AIAA J. 55 2269Google Scholar

    [10]

    Gao H, Li J B, Chan P W, Hon K K, Wang X S 2018 Opt. Express 26 16377Google Scholar

    [11]

    Marshall R E, Mudukutore A, Wissel V L H, Myers T 1998 Three-Centimeter Doppler Radar Observations of Wingtip-Generated Wake Vortices in Clear Air Report No. NASA/ CR-97-206260

    [12]

    武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 物理学报 62 184702Google Scholar

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702Google Scholar

    [13]

    易仕和, 陈植 2015 物理学报 64 199401Google Scholar

    Yi S, Chen Z 2015 Acta Phys. Sin. 64 199401Google Scholar

    [14]

    Sun Q, Cui W, Li Y H, Cheng B Q, Jin D, Li J 2014 Chin. Phys. B 23 075210Google Scholar

    [15]

    Heineck J T, Banks D W, Smith N T, Schairer E T, Bean P S, Robillos T 2021 AIAA J. 59 11Google Scholar

    [16]

    Heineck J T, Banks D W, Schairer E T, Haering E A Jr., Bean P S 2016 AIAA Flight Testing Conference Washington, DC, USA, June 13–17, 2016 p11

    [17]

    李新亮 2015 航空学报 36 147Google Scholar

    Li X L 2015 Acta Aeronaut. ET Astronaut. Sin. 36 147Google Scholar

    [18]

    Yu C P, Hu R N, Yan Z, Li X L 2022 J. Fluid Mech. 940 A18Google Scholar

    [19]

    Hu R N, Li X L, Yu C P 2023 J. Fluid Mech. 972 A14Google Scholar

    [20]

    Hu R N, Li X L, Yu C P 2022 J. Fluid Mech. 946 A19Google Scholar

    [21]

    卞正富 2002 测量学 (北京: 中国农业出版社) 第17页

    Bian Z F 2002 Surveying (Beijing: China Agriculture Press) p17

    [22]

    黄金 2024 硕士学位论文 (西安: 西安理工大学)

    Huang J 2024 M. S. Dissertation (Xi’an: Xi’an University of Technology

    [23]

    崔洪鲁, 闫召爱, 张炳炎, 郭文杰, 胡雄 2020 空间科学学报 40 1046Google Scholar

    Cui H L, Yan Z, Zhang B Y, Guo W J, Hu X 2020 Chin. J. Space Sci. 40 1046Google Scholar

    [24]

    陈胜哲 2014 博士学位论文 (北京: 北京理工大学)

    Chen S Z 2014 Ph. D. Dissertation (Beijing: Beijing Institute of Technology

    [25]

    刘厚通, 陈良富, 苏林 2011 物理学报 60 064204Google Scholar

    Liu H T, Chen L F, Su L 2011 Acta Phys. Sin. 60 064204Google Scholar

    [26]

    白珺, 袁艳, 苏丽娟, 孙成明 2012 现代电子技术 35 124Google Scholar

    Bai J, Yuan Y, Su L J, Sun C M 2012 Modern Electron. Tech. 35 124Google Scholar

    [27]

    马雪莲 2015 光子学报 44 0601003Google Scholar

    Ma X L 2015 Acta Photonica Sin. 44 0601003Google Scholar

    [28]

    陈武喝 1999 光电子·激光 10 375Google Scholar

    Chen W H 1999 J. Optoelectron. ·Laser 10 375Google Scholar

  • [1] 王小云, 范汇川, 陈效双, 王林. 基于单层MoS2场效应管中等离子波的太赫兹探测仿真. 物理学报, 2025, 74(15): . doi: 10.7498/aps.74.20250517
    [2] 程双毅, 郁钧瑾, 付亚鹏, 他得安, 许凯亮. 非线性造影超声成像数值仿真方法. 物理学报, 2023, 72(15): 154302. doi: 10.7498/aps.72.20230323
    [3] 孙浚凯, 王军转, 施毅. 基于锥形硅纳米线色彩分辨探测能力仿真. 物理学报, 2021, 70(11): 116103. doi: 10.7498/aps.70.20202031
    [4] 卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏. 浅海被动水下偏振成像探测方法. 物理学报, 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [5] 王玉峰, 张晶, 汤柳, 王晴, 高天乐, 宋跃辉, 狄慧鸽, 李博, 华灯鑫. 基于拉曼激光雷达的大气三相态水同步精细探测分光系统的设计与仿真分析. 物理学报, 2018, 67(22): 224205. doi: 10.7498/aps.67.20180644
    [6] 王安静, 方勇华, 李大成, 崔方晓, 吴军, 刘家祥, 李扬裕, 赵彦东. 面阵探测下的污染云团红外光谱仿真. 物理学报, 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [7] 程志远, 马彩文, 马青. 激光光强扰动对相干场成像降质影响理论研究. 物理学报, 2017, 66(24): 244202. doi: 10.7498/aps.66.244202
    [8] 唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜. 地基气辉成像干涉仪探测高层大气风场的定标研究. 物理学报, 2017, 66(13): 130601. doi: 10.7498/aps.66.130601
    [9] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [10] 王盼盼, 周晨, 宋杨, 张援农, 赵正予. 大气风场和温度对无线电声波探测系统探测高度影响的数值研究. 物理学报, 2015, 64(10): 100205. doi: 10.7498/aps.64.100205
    [11] 葛烨, 舒嵘, 胡以华, 刘豪. 大气水汽探测地基差分吸收激光雷达系统设计与性能仿真. 物理学报, 2014, 63(20): 204301. doi: 10.7498/aps.63.204301
    [12] 赵小峰, 黄思训. 大气波导条件下雷达海杂波功率仿真. 物理学报, 2013, 62(9): 099204. doi: 10.7498/aps.62.099204
    [13] 程胡华, 钟中, 岑瑾, 邓少格. 估算大气重力波参数的垂直扰动廓线获取新方法. 物理学报, 2012, 61(18): 189201. doi: 10.7498/aps.61.189201
    [14] 刘政, 王胜千, 饶长辉. 一种基于远场图像的稀疏光学合成孔径系统共相探测新方法的仿真研究. 物理学报, 2012, 61(3): 039501. doi: 10.7498/aps.61.039501
    [15] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究. 物理学报, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [16] 张霖, 张淳民, 简小华. 高层大气风场洛伦兹光谱线型粒子辐射率探测研究. 物理学报, 2010, 59(2): 899-906. doi: 10.7498/aps.59.899
    [17] 蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力. 临近空间大气中子环境的仿真研究. 物理学报, 2009, 58(9): 6659-6664. doi: 10.7498/aps.58.6659
    [18] 阮 锴, 张淳民, 赵葆常. 高层大气风场探测改型大光程差Sagnac干涉仪全视场角光程差与横向剪切量的精确计算. 物理学报, 2008, 57(9): 5435-5441. doi: 10.7498/aps.57.5435
    [19] 唐远河, 张淳民, 刘汉臣, 陈光德, 贺 健. 基于镀膜四面角锥棱镜技术的上层大气风场探测研究. 物理学报, 2005, 54(9): 4065-4071. doi: 10.7498/aps.54.4065
    [20] 王晓春, 周定文, 张以谟. 非线性光学位相共轭实时补偿大气湍流扰动. 物理学报, 1989, 38(3): 466-470. doi: 10.7498/aps.38.466
计量
  • 文章访问数:  363
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-28
  • 修回日期:  2025-04-02
  • 上网日期:  2025-04-24

/

返回文章
返回