搜索

x
中国物理学会期刊

MBene基高性能离子电池负极材料的第一性原理研究

CSTR: 32037.14.aps.74.20250251

First-principles study of MBene-based high-performance anode materials for ion batteries

CSTR: 32037.14.aps.74.20250251
PDF
HTML
导出引用
  • 二维过渡金属硼化物(MBene)作为新型金属离子电池电极材料, 具有MB, M2B, M2B2等多种相结构, 然而现有研究对于M2B相体系的探索仍显匮乏. 本研究聚焦于M2B相MBene的设计, 首次构建了硫(S)官能团化的Zr2BS2和Nb2BS2两种全新材料, 系统揭示了其作为锂/钠离子电池负极材料的性能机制. 通过第一性原理的计算方法, 证实Zr2BS2和Nb2BS2两种材料具备优异的结构稳定性, 并且在钠离子电池中展现出较高的理论比容量(分别为624 mA·h/g和616 mA·h/g)以及较低的扩散势垒(Na+扩散势垒低至0.131 eV和0.088 eV). 同时, 其较低的开路电压(0.38 V和0.21 V)可有效抑制枝晶生长, 兼具高容量与安全性. 本研究不仅完善了M2B相MBene体系的系统性研究, 更为开发高容量、快充型钠离子电池负极材料提供了理论指导.

     

    Two-dimensional transition metal borides (MBene), as emerging electrode materials for metal-ion batteries, exhibit various phase structures, including MB, M2B, and M2B2. However, current research on the M2B-phase system remains insufficient. This study focuses on the design of M2B-phase MBenes, pioneering the construction of two novel sulfur-functionalized materials, Zr2BS2 and Nb2BS2, while systematically elucidating their performance mechanisms as anode materials for lithium/sodium-ion batteries. Through first-principles calculations, both Zr2BS2 and Nb2BS2 demonstrate exceptional structural stability and superior electrochemical properties in sodium-ion battery applications. Specifically, they exhibit high theoretical specific capacities (624 mA·h/g and 616 mA·h/g) and remarkably low diffusion energy barriers for Na+ (0.131 eV and 0.088 eV). Moreover, their low open-circuit voltages (0.38 V and 0.21 V) effectively suppress dendrite growth, achieving an optimal balance between high capacity and operational safety. This work not only establishes a theoretical framework for MBene-based anode design but also provides critical insights into the correlation between surface functionalization, structural stability, and ion transport kinetics. These findings provide valuable guidance for developing other two-dimensional materials and non-layered systems, while contributing to mechanistic understanding of charge-discharge processes in transition metal dichalcogenide TMD-based lithium/sodium-ion batteries.

     

    目录

    /

    返回文章
    返回