搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MBene基高性能离子电池负极材料的第一性原理研究

段坤 陈健 康瑶 王旭东 姚曼

引用本文:
Citation:

MBene基高性能离子电池负极材料的第一性原理研究

段坤, 陈健, 康瑶, 王旭东, 姚曼
cstr: 32037.14.aps.74.20250251

First-principles study of MBene-based high-performance anode materials for ion batteries

DUAN Kun, CHEN Jian, KANG Yao, WANG Xudong, YAO Man
cstr: 32037.14.aps.74.20250251
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 二维过渡金属硼化物(MBene)作为新型金属离子电池电极材料, 具有MB, M2B, M2B2等多种相结构, 然而现有研究对于M2B相体系的探索仍显匮乏. 本研究聚焦于M2B相MBene的设计, 首次构建了硫(S)官能团化的Zr2BS2和Nb2BS2两种全新材料, 系统揭示了其作为锂/钠离子电池负极材料的性能机制. 通过第一性原理的计算方法, 证实Zr2BS2和Nb2BS2两种材料具备优异的结构稳定性, 并且在钠离子电池中展现出较高的理论比容量(分别为624 mA·h/g和616 mA·h/g)以及较低的扩散势垒(Na+扩散势垒低至0.131 eV和0.088 eV). 同时, 其较低的开路电压(0.38 V和0.21 V)可有效抑制枝晶生长, 兼具高容量与安全性. 本研究不仅完善了M2B相MBene体系的系统性研究, 更为开发高容量、快充型钠离子电池负极材料提供了理论指导.
    Two-dimensional transition metal borides (MBene), as emerging electrode materials for metal-ion batteries, exhibit various phase structures, including MB, M2B, and M2B2. However, current research on the M2B-phase system remains insufficient. This study focuses on the design of M2B-phase MBenes, pioneering the construction of two novel sulfur-functionalized materials, Zr2BS2 and Nb2BS2, while systematically elucidating their performance mechanisms as anode materials for lithium/sodium-ion batteries. Through first-principles calculations, both Zr2BS2 and Nb2BS2 demonstrate exceptional structural stability and superior electrochemical properties in sodium-ion battery applications. Specifically, they exhibit high theoretical specific capacities (624 mA·h/g and 616 mA·h/g) and remarkably low diffusion energy barriers for Na+ (0.131 eV and 0.088 eV). Moreover, their low open-circuit voltages (0.38 V and 0.21 V) effectively suppress dendrite growth, achieving an optimal balance between high capacity and operational safety. This work not only establishes a theoretical framework for MBene-based anode design but also provides critical insights into the correlation between surface functionalization, structural stability, and ion transport kinetics. These findings provide valuable guidance for developing other two-dimensional materials and non-layered systems, while contributing to mechanistic understanding of charge-discharge processes in transition metal dichalcogenide TMD-based lithium/sodium-ion batteries.
      通信作者: 姚曼, yaoman@dlut.edu.cn
      Corresponding author: YAO Man, yaoman@dlut.edu.cn
    [1]

    Dusastre V, Martiradonna L 2017 Nat. Mater. 16 15Google Scholar

    [2]

    Tian J J, Xue Q F, Yao Q, Li N, Christoph J, Brabec, Hin L Y 2020 Adv. Energy Mater. 10 2000183Google Scholar

    [3]

    Akkerman Q A, Gandini M, Stasio F D, Rastogi P, Palazon F, Bertoni G, Ball J M, Prato M, Petrozza A, Manna L 2016 Nat. Energy 2 16194Google Scholar

    [4]

    Barre A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D 2013 J. Power Sources 241 680Google Scholar

    [5]

    Wang Y X, Liu B, Li Q Y, Cartmell S, Ferrara S, Deng Z Q, Xiao J 2015 J. Power Sources 286 330Google Scholar

    [6]

    Jin L M, Shen C, Shellikeri A, Wu Q, Zheng J S, Andrei P, Zhang J G, Zheng J P 2020 Energy Environ. Sci. 13 2341Google Scholar

    [7]

    Noori A, El-Kady M F, Rahmanifar M S, Kaner R B, Mousavi M F 2019 Chem. Soc. Rev. 48 1272Google Scholar

    [8]

    Soltani M, Beheshti S H 2021 J. Energy Storage 34 102019Google Scholar

    [9]

    Choi N S, Chen Z, Freunberger S A, Ji X, Sun Y K, Amine K, Yushin G, Nazar L F, Cho J, Bruce P G 2012 Angew. Chem. Int. Ed. 51 9994Google Scholar

    [10]

    Fang Y J, Xiao L F, Chen Z X, Ai X P, Cao Y L, Yang H X 2018 Electrochem. Energy Rev. 1 294Google Scholar

    [11]

    Li F, Tang Q 2019 ACS Appl. Nano Mater. 2 7220Google Scholar

    [12]

    Zhang B K, Zhou J, Guo Z L, Peng Q, Sun Z M 2020 Appl. Surf. Sci. 500 144248Google Scholar

    [13]

    Liu X, Ge X L, Dong Y, Fu K, Meng F B, Si R H, Zhang M H, Xu X W 2020 Mater. Chem. Phys. 253 123334Google Scholar

    [14]

    Zhang B K, Zhou J, Sun Z M 2022 J. Mater. Chem. A 10 15865Google Scholar

    [15]

    Guo Z L, Zhou J, Sun Z M 2017 J. Mater. Chem. A 5 23530Google Scholar

    [16]

    Zha X H, Xu P, Huang Q, Du S, Zhang R Q 2020 Nanoscale Adv. 2 347Google Scholar

    [17]

    Ma N G, Wang T R, Li N, Li Y R, Fan J 2022 Appl. Surf. Sci. 571 151275Google Scholar

    [18]

    Jia J, Li B J, Duan S Q, Cui Z, Gao H T 2019 Nanoscale 11 20307Google Scholar

    [19]

    Zhou J, Palisaitis J, Halim J, Dahlqvist M, Tao Q, Persson I, Hultman L, Persson P O Å, Rosen J 2021 Science 373 801Google Scholar

    [20]

    Khaledialidusti R, Khazaei M, Wang V, Miao N, Si C, Wang J, Wang J 2021 J. Phys.: Condens. Matter 33 155503Google Scholar

    [21]

    Liang B C, Ma N G, Wang Y H, Wang T R, Fan J 2022 Appl. Surf. Sci. 599 153927Google Scholar

    [22]

    Mehta V, Saini H S, Srivastava S, Kashyap M K, Tankeshwar K 2019 J. Phys. Chem. C 123 25052Google Scholar

    [23]

    Li D Q, Chen X F, Xiang P, Du H Y, Xiao B B 2020 Appl. Surf. Sci. 501 144221Google Scholar

    [24]

    Wang Y H, Ma N G, Liang B C, Fan J 2022 Appl. Surf. Sci. 596 153619Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [27]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [29]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [32]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355Google Scholar

    [33]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [34]

    Paier J, Hirschl R, Marsman M, Kresse G 2005 J. Chem. Phys. 122 234102Google Scholar

    [35]

    Yuan X, Zhang Z Y, He Y P, Zhao S Q, Zhou N G 2022 J. Phys. Chem. C 126 91Google Scholar

    [36]

    Yan B Z, Lu C J, Zhang P G, Chen J, He W, Tian W B, Zhang W, Sun Z M 2020 Mater. Today Commun. 22 100713Google Scholar

    [37]

    Chen Z H, Huang S W, Yuan X, Gan X L, Zhou N G 2021 Appl. Surf. Sci. 544 148861Google Scholar

    [38]

    Singh S, Espejo C, Romero A H 2018 Phys. Rev. B 98 155309Google Scholar

    [39]

    Andrew R C, Mapasha R E, Ukpong A M, Chetty N 2012 Phys. Rev. B 85 125428Google Scholar

    [40]

    Born M, Huang K 1996 Dynamical Theory of Crystal Lattices (New York: Oxford University Press) pp129–165

    [41]

    Shu H B, Li F, Hu C L, Liang P, Cao D, Chen X S 2016 Nanoscale 13 2918Google Scholar

    [42]

    Zhang X M, Yu Z M, Wang S S, Guan S, Yang H Y, Yao Y G, Yang S A 2016 J. Mater. Chem. A 4 15224Google Scholar

    [43]

    Meng Q Q, Ma J L, Zhang Y H, Li Z, Hu A, Kai J J, Fan J 2018 J. Mater. Chem. A 6 13652Google Scholar

    [44]

    Meng Q Q, Ma J L, Zhang Y H, Li Z, Zhi C Y, Hu A, Fan J 2018 Nanoscale 10 3385Google Scholar

    [45]

    Shukla V, Jena N K, Naqvi S R, Luo W, Ahuja R 2019 Nano Energy 58 877Google Scholar

    [46]

    Gao S L, Hao J B, Zhang X H, Li L, Zhang C L, Wu L Y, Ma X G, Lu P F, Liu G 2021 Comput. Mater. Sci. 200 110776Google Scholar

    [47]

    Urban A, Seo D H, Ceder G 2016 npj Comput. Mater. 2 16002Google Scholar

    [48]

    Aydinol M K, Kohan A F, Ceder G, Cho K, Joannopoulos J 1997 Phys. Rev. B 56 1354Google Scholar

    [49]

    Eames C, Islam M S 2014 J. Am. Chem. Soc. 136 16270Google Scholar

    [50]

    Yang E, Ji H, Kim J, Kim H, Jung Y 2015 Phys. Chem. Chem. Phys. 17 5000Google Scholar

  • 图 1  (a) Zr2B, (b) Nb2B, (c) Zr2BS2和(d) Nb2BS2 结构模型

    Fig. 1.  Structural models of (a) Zr2B, (b) Nb2B, (c) Zr2BS2, and (d) Nb2BS2.

    图 2  (a) Zr2B和(b) Nb2B声子色散曲线; 350 K下(c) Zr2B, (d) Nb2B, (e) Zr2BS2和(f) Nb2BS2的AIMD模拟

    Fig. 2.  Phonon dispersion curves of (a) Zr2B and (b) Nb2B; AIMD simulations at 350 K for (c) Zr2B, (d) Nb2B, (e) Zr2BS2, and (f) Nb2BS2.

    图 3  (a) Zr2BS2和(b) Nb2BS2能带结构; (c) Zr2BS2和(d) Nb2BS2态密度

    Fig. 3.  Band structures of (a) Zr2BS2 and (b) Nb2BS2; DOS of (c) Zr2BS2 and (d) Nb2BS2.

    图 4  (a) Zr2BS2和(b) Nb2BS2结构模型及不同位点的吸附能; Zr2BS2 (0 1 0)截面的(c) Li和(d) Na不同位点的差分电荷密度; Nb2BS2 (0 1 0)截面的(e) Li和(f) Na不同位点的差分电荷密度

    Fig. 4.  Structural model of (a) Zr2BS2 and (b) Nb2BS2 with adsorption energies at different sites; differential charge density for Li and Na at different sites on the (0 1 0) plane of (c), (d) Zr2BS2 and (e), (f) Nb2BS2.

    图 5  350 K下(a) Zr2BS2Li2, (b) Zr2BS2Na2, (c) Nb2BS2Li2和(d) Nb2BS2Na2在0 ps和8 ps时的AIMD模拟结构模型

    Fig. 5.  AIMD-simulated structural models at 0 ps and 8 ps for (a) Zr2BS2Li2, (b) Zr2BS2Na2, (c) Nb2BS2Li2, and (d) Nb2BS2Na2 at 350 K.

    图 6  (a) Zr2BS2和(b) Nb2BS2表面扩散路径; Zr2BS2表面(c) Li和(d) Na扩散势垒; Nb2BS2表面(e) Li和(f) Na扩散势垒

    Fig. 6.  Surface diffusion paths of (a) Zr2BS2 and (b) Nb2BS2; diffusion barriers for Li and Na on the surface of (c), (d) Zr2BS2 and (e), (f) Nb2BS2.

    图 7  (1 1 0)截面的(a) Zr2BS2Li2, (b) Zr2BS2Na2, (c) Nb2BS2Li2和(d) Nb2BS2Na2电子局域函数

    Fig. 7.  ELF on the (1 1 0) plane of (a) Zr2BS2Li2, (b) Zr2BS2Na2, (c) Nb2BS2Li2, and (d) Nb2BS2Na2.

    图 8  (a) Zr2BS2Nax和(b) Nb2BS2Nax开路电压

    Fig. 8.  Open-circuit voltage of (a) Zr2BS2Nax and (b) Nb2BS2Nax.

    表 1  Zr2BS2, Nb2BS2和MoS2的弹性常数、杨氏模量、泊松比计算结果及文献[38]结果

    Table 1.  Calculated results of elastic constants, Young’s modulus, Poisson’s ratio of Zr2BS2, Nb2BS2, and MoS2, and the results from Ref. [38].

    System C11/
    (N·m–1)
    C22/
    (N·m–1)
    C12/
    (N·m–1)
    $ E_{x(y)}^{\rm 2D} $/
    (N·m–1)
    $ v_{x(y)}^{2{\text{D}}} $
    Zr2BS2 131.1 131.1 28.1 125.1 0.21
    Nb2BS2 197.2 197.2 43.0 187.8 0.22
    MoS2 135.4 135.4 30.6 128.4 0.23
    MoS2[38] 132.3 132.3 32.8 124.1 0.25
    下载: 导出CSV
  • [1]

    Dusastre V, Martiradonna L 2017 Nat. Mater. 16 15Google Scholar

    [2]

    Tian J J, Xue Q F, Yao Q, Li N, Christoph J, Brabec, Hin L Y 2020 Adv. Energy Mater. 10 2000183Google Scholar

    [3]

    Akkerman Q A, Gandini M, Stasio F D, Rastogi P, Palazon F, Bertoni G, Ball J M, Prato M, Petrozza A, Manna L 2016 Nat. Energy 2 16194Google Scholar

    [4]

    Barre A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D 2013 J. Power Sources 241 680Google Scholar

    [5]

    Wang Y X, Liu B, Li Q Y, Cartmell S, Ferrara S, Deng Z Q, Xiao J 2015 J. Power Sources 286 330Google Scholar

    [6]

    Jin L M, Shen C, Shellikeri A, Wu Q, Zheng J S, Andrei P, Zhang J G, Zheng J P 2020 Energy Environ. Sci. 13 2341Google Scholar

    [7]

    Noori A, El-Kady M F, Rahmanifar M S, Kaner R B, Mousavi M F 2019 Chem. Soc. Rev. 48 1272Google Scholar

    [8]

    Soltani M, Beheshti S H 2021 J. Energy Storage 34 102019Google Scholar

    [9]

    Choi N S, Chen Z, Freunberger S A, Ji X, Sun Y K, Amine K, Yushin G, Nazar L F, Cho J, Bruce P G 2012 Angew. Chem. Int. Ed. 51 9994Google Scholar

    [10]

    Fang Y J, Xiao L F, Chen Z X, Ai X P, Cao Y L, Yang H X 2018 Electrochem. Energy Rev. 1 294Google Scholar

    [11]

    Li F, Tang Q 2019 ACS Appl. Nano Mater. 2 7220Google Scholar

    [12]

    Zhang B K, Zhou J, Guo Z L, Peng Q, Sun Z M 2020 Appl. Surf. Sci. 500 144248Google Scholar

    [13]

    Liu X, Ge X L, Dong Y, Fu K, Meng F B, Si R H, Zhang M H, Xu X W 2020 Mater. Chem. Phys. 253 123334Google Scholar

    [14]

    Zhang B K, Zhou J, Sun Z M 2022 J. Mater. Chem. A 10 15865Google Scholar

    [15]

    Guo Z L, Zhou J, Sun Z M 2017 J. Mater. Chem. A 5 23530Google Scholar

    [16]

    Zha X H, Xu P, Huang Q, Du S, Zhang R Q 2020 Nanoscale Adv. 2 347Google Scholar

    [17]

    Ma N G, Wang T R, Li N, Li Y R, Fan J 2022 Appl. Surf. Sci. 571 151275Google Scholar

    [18]

    Jia J, Li B J, Duan S Q, Cui Z, Gao H T 2019 Nanoscale 11 20307Google Scholar

    [19]

    Zhou J, Palisaitis J, Halim J, Dahlqvist M, Tao Q, Persson I, Hultman L, Persson P O Å, Rosen J 2021 Science 373 801Google Scholar

    [20]

    Khaledialidusti R, Khazaei M, Wang V, Miao N, Si C, Wang J, Wang J 2021 J. Phys.: Condens. Matter 33 155503Google Scholar

    [21]

    Liang B C, Ma N G, Wang Y H, Wang T R, Fan J 2022 Appl. Surf. Sci. 599 153927Google Scholar

    [22]

    Mehta V, Saini H S, Srivastava S, Kashyap M K, Tankeshwar K 2019 J. Phys. Chem. C 123 25052Google Scholar

    [23]

    Li D Q, Chen X F, Xiang P, Du H Y, Xiao B B 2020 Appl. Surf. Sci. 501 144221Google Scholar

    [24]

    Wang Y H, Ma N G, Liang B C, Fan J 2022 Appl. Surf. Sci. 596 153619Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [27]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [29]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [32]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355Google Scholar

    [33]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [34]

    Paier J, Hirschl R, Marsman M, Kresse G 2005 J. Chem. Phys. 122 234102Google Scholar

    [35]

    Yuan X, Zhang Z Y, He Y P, Zhao S Q, Zhou N G 2022 J. Phys. Chem. C 126 91Google Scholar

    [36]

    Yan B Z, Lu C J, Zhang P G, Chen J, He W, Tian W B, Zhang W, Sun Z M 2020 Mater. Today Commun. 22 100713Google Scholar

    [37]

    Chen Z H, Huang S W, Yuan X, Gan X L, Zhou N G 2021 Appl. Surf. Sci. 544 148861Google Scholar

    [38]

    Singh S, Espejo C, Romero A H 2018 Phys. Rev. B 98 155309Google Scholar

    [39]

    Andrew R C, Mapasha R E, Ukpong A M, Chetty N 2012 Phys. Rev. B 85 125428Google Scholar

    [40]

    Born M, Huang K 1996 Dynamical Theory of Crystal Lattices (New York: Oxford University Press) pp129–165

    [41]

    Shu H B, Li F, Hu C L, Liang P, Cao D, Chen X S 2016 Nanoscale 13 2918Google Scholar

    [42]

    Zhang X M, Yu Z M, Wang S S, Guan S, Yang H Y, Yao Y G, Yang S A 2016 J. Mater. Chem. A 4 15224Google Scholar

    [43]

    Meng Q Q, Ma J L, Zhang Y H, Li Z, Hu A, Kai J J, Fan J 2018 J. Mater. Chem. A 6 13652Google Scholar

    [44]

    Meng Q Q, Ma J L, Zhang Y H, Li Z, Zhi C Y, Hu A, Fan J 2018 Nanoscale 10 3385Google Scholar

    [45]

    Shukla V, Jena N K, Naqvi S R, Luo W, Ahuja R 2019 Nano Energy 58 877Google Scholar

    [46]

    Gao S L, Hao J B, Zhang X H, Li L, Zhang C L, Wu L Y, Ma X G, Lu P F, Liu G 2021 Comput. Mater. Sci. 200 110776Google Scholar

    [47]

    Urban A, Seo D H, Ceder G 2016 npj Comput. Mater. 2 16002Google Scholar

    [48]

    Aydinol M K, Kohan A F, Ceder G, Cho K, Joannopoulos J 1997 Phys. Rev. B 56 1354Google Scholar

    [49]

    Eames C, Islam M S 2014 J. Am. Chem. Soc. 136 16270Google Scholar

    [50]

    Yang E, Ji H, Kim J, Kim H, Jung Y 2015 Phys. Chem. Chem. Phys. 17 5000Google Scholar

  • [1] 王浩, 谢佳苗, 郝文乾, 李京阳, 张鹏, 马晓帆, 刘福, 王旭. 气流流型和流速耦合作用下固体氧化物燃料电池电化学性能. 物理学报, 2025, 74(11): 118201. doi: 10.7498/aps.74.20250096
    [2] 黄盛星, 陈健, 王文菲, 王旭东, 姚曼. 新型双过渡金属MXene热电输运性能第一性原理计算. 物理学报, 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [3] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [4] 王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽. CuBiI三元化合物晶体结构预测及光电性能第一性原理研究. 物理学报, 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [5] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [6] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能. 物理学报, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [7] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [8] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能. 物理学报, 2018, 67(23): 238103. doi: 10.7498/aps.67.20181524
    [9] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [10] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [11] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [12] 陈畅, 汝强, 胡社军, 安柏楠, 宋雄. Co2SnO4/Graphene复合材料的制备与电化学性能研究. 物理学报, 2014, 63(19): 198201. doi: 10.7498/aps.63.198201
    [13] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [14] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [15] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [16] 代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛. 金属氢化物力学性能的第一性原理研究. 物理学报, 2012, 61(10): 108801. doi: 10.7498/aps.61.108801
    [17] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [18] 白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究. 物理学报, 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [19] 潘金平, 胡晓君, 陆利平, 印迟. 退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [20] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
计量
  • 文章访问数:  334
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-28
  • 修回日期:  2025-04-16
  • 上网日期:  2025-04-24

/

返回文章
返回