搜索

x
中国物理学会期刊

改进的关联源量子密钥分发

CSTR: 32037.14.aps.74.20250268

Improved source-correlated quantum key distribution

CSTR: 32037.14.aps.74.20250268
PDF
HTML
导出引用
  • 量子密钥分发为远程安全通信提供了理论保障, 但现有的关联源量子密钥分发协议在处理源关联性时容忍能力较弱, 导致密钥率低、传输距离短, 限制了其应用. 本文提出了一种改进的关联源量子密钥分发协议, 摒弃传统的基于损耗容忍的安全性分析, 转而采用标准BB84协议进行安全性分析. 通过对比不同参数下的性能, 结果表明, 改进协议在密钥率和传输距离上具有显著提升, 展示了更强的应用潜力.

     

    Based on the basic principles of quantum mechanics, quantum key distribution (QKD) provides unconditional security for long-distance communication. However, existing QKD with relevant source protocols have limited tolerance for source correlation, which greatly reduces the key generation rate and limits the secure transmission distance, thereby limiting their practical deployment. In this work, we propose an improved QKD with correlated source protocol to overcome these limitations by discarding the traditional loss-tolerant security frameworks. Our approach adopts the standard BB84 protocol for the security analysis, under the assumption that the source correlation has a bounded range and characterized inner product of the states. We theoretically analyze the performance of the improved protocol at different levels of source correlation and channel loss. Numerical simulations show that our protocol achieves a much higher secret key rate and longer transmission distance than traditional schemes. In the case of typical parameters and 0 dB loss, our protocol achieves about 1.5–3 times improvement in secret key rate. Additionally, the maximum tolerable loss is enhanced by about 2–6 dB. This highlights a promising direction for enhancing the robustness and practicality of QKD with correlated sources systems, paving the way for their deployment in real-world quantum communication networks.

     

    目录

    /

    返回文章
    返回