搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC功率MOSFET单粒子效应与加固技术研究进展

邱一武 梁迪 殷亚楠 董磊 王韬 周昕杰

引用本文:
Citation:

SiC功率MOSFET单粒子效应与加固技术研究进展

邱一武, 梁迪, 殷亚楠, 董磊, 王韬, 周昕杰

Research progress of single event effect and reinforcement technology of SiC power metal-oxide-semiconductor field-effect transistors

QIU Yiwu, LIANG Di, YIN Yanan, DONG Lei, WANG Tao, ZHOU Xinjie
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在空间核反应堆系统、深空探测器电源模块以及运载火箭推进装置等极端辐射环境中, 高压大功率器件展现出重要的应用价值. 碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)具备耐高压、耐高温和低导通损耗等优点, 能够使宇航电源的效率得到进一步提升. 因此, SiC功率MOSFET空间辐射效应和抗辐射加固技术迅速成为行业的研究热点. 首先, 本文回顾了SiC功率MOSFET器件的发展历程, 分析了从平面栅技术到沟槽栅技术的演变过程, 并对未来新型SiC功率MOSFET技术进行了展望. 其次, 针对SiC功率MOSFET在复杂空间环境下面临的辐射损伤问题, 着重梳理了目前国内外关于重离子辐照SiC功率MOSFET引起的单粒子烧毁与单粒子栅穿的相关研究成果. 最后, 基于SiC功率MOSFET单粒子辐射损伤机制分析, 总结了目前SiC功率MOSFET抗辐射加固技术的研究进展, 为研究SiC功率MOSFET单粒子效应损伤机制以及改进其抗辐射加固技术提供参考.
    In extreme radiation environments, such as space nuclear reactor systems, deep-space probe power modules, and launch vehicle propulsion systems, high-voltage and high-power devices demonstrate significant practical value. Silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) possess advantages including high breakdown voltage, thermal stability, and low on-state resistance, enabling further improvements in aerospace power supply efficiency. Therefore, research on radiation effects and radiation-hardening techniques for SiC power MOSFETs has rapidly emerged as a critical focus in the industry. Firstly, this paper reviews the developmental evolution of SiC power MOSFETs, analyzes the necessity of transitioning from planar gate to trench-gate architectures, and provides future prospects for advanced SiC power MOSFET technologies. Secondly, it systematically compiles current research achievements in single event burnout (SEB) and single event gate rupture (SEGR) caused by heavy ion irradiation in SiC power MOSFETs. Finally, based on a mechanistic analysis of radiation-induced single event damage in SiC power MOSFETs, this study summarizes recent progress of radiation-hardening technologies, aiming to provide valuable ideas for understanding radiation induced failure mechanisms and enhancing the radiation tolerance of SiC power MOSFETs.
  • 图 1  SiC功率MOSFET器件结构示意图 (a)平面型MOSFET; (b)沟槽型MOSFET

    Fig. 1.  Structure diagram of SiC power MOSFET device (not to scale): (a) VDMOSFET; (b) TGMOSFET.

    图 2  SiC功率MOSFET产品技术演变示意图

    Fig. 2.  Technical evolution diagram of SiC power MOSFET products.

    图 3  几种沟槽型SiC MOSFET栅氧屏蔽结构示意图 (a) ROHM双沟槽结构[15]; (b) Infineon非对称沟槽结构[17]; (c)直接屏蔽结构[29]; (d)间接屏蔽结构[32]; (e)台阶沟槽结构[33]; (f) P+埋层V型沟槽结构[35]

    Fig. 3.  Schematic diagrams of several trench-type SiC MOSFET gate oxide shielding structures (not to scale): (a) ROHM’s double-trench structure[15]; (b) Infineon’s asymmetric trench structure[17]; (c) direct shielding structure [29]; (d) indirect shielding structure[32]; (e) stepped trench structure[33]; (f) P+ buried layer V-shaped trench structure[35].

    图 4  功率MOSFET器件总剂量效应、位移损伤效应和单粒子效应损伤机理示意图

    Fig. 4.  Damage mechanism diagram of power MOSFET’s total ionization dose, displacement damage and single event effect.

    图 5  重离子辐照过程中SiC MOSFET SEB过程与VDS的关系[44]

    Fig. 5.  The SEB processing for SiC power MOSFET as a function of the drain-source bias VDS during the heavy ion irradiation[44].

    图 6  Ar, Fe, Kr和Xe离子辐照实验结果[46] (a)器件在VDS = 60 V下Xe离子辐照时的ID-VGSIG-VGS特性曲线; (b)辐照后VDS扫描测试, 所有器件在580 V < VDS < 700 V范围内失效. 原始状态下的IDIG以灰色显示

    Fig. 6.  Results from irradiations with Ar, Fe, Kr and Xe ions[46]: (a) ID-VGS and IG-VGS of device exposed to Xe at VDS = 60 V; (b) post-irradiation VDS sweep; all the devices failed at 580 V < VDS < 700 V. The pristine ID and IG are shown in gray.

    图 7  重离子入射 (a) 1 ps, (b) 10 ps, (c) 100 ps和(d) 1 ns后器件内部晶格温度分布图[63]

    Fig. 7.  Distribution of lattice temperature in device after heavy ion incident of (a) 1 ps, (b) 10 ps, (c) 100 ps, and (d) 1 ns[63].

    图 8  (a) 在LET = 0.1 pC/μm, VDS = 400 V条件下, 无N+源和有N+源器件在30, 100 ps和1 ns时离子撞击后的电子电流密度分布 [75]; (b) 垂直N沟道双扩散功率MOSFET辐射下的一维电场和载流子分布[76]

    Fig. 8.  (a) Electron current density distribution at 30, 100 ps, and 1 ns after the ion strike for device without N+ source and with N+ source (LET = 0.1 pC/μm, VDS = 400 V) [75]; (b) vertical N-channel double-diffused power MOSFET under radiation strike with 1D electric field distribution and carrier mapping[76].

    图 9  NITG-MOSFET单粒子烧毁结果和N+岛优化参数设计[83] (a)厚度; (b)宽度; (c)第二缓冲层掺杂浓度

    Fig. 9.  SEB results of NITG-MOSFET and optimized design parameters of N+ island[83]: (a) Thickness; (b) width; (c) N-buffer 2 dopant concentration.

    图 10  在LET = 0.1 pC/μm, VDS = 650 V条件下, 离子撞击后器件中心的内部电场变化图[75] (a) VDMOSFET; (b) DBL-MOSFET; (c) GBL-MOSFET; (d) SBL-MOSFET

    Fig. 10.  The variation of internal electric field at the device center after the ion strike (LET = 0.1 pC/μm, VDS = 650 V) [75]: (a) VDMOSFET; (b) DBL-MOSFET; (c) GBL-MOSFET; (d) SBL-MOSFET.

    图 11  1200 V SiC MOSFET结构示意图[86] (a)分裂栅与集成肖特基势垒二极管(SBD)结构; (b)扩展型P+源接触结构; (c)多层N型间隔缓冲层结构; (d)扩展型P+源接触与多层N型间隔缓冲层的复合结构

    Fig. 11.  Schematic diagram of 1200 V SiC MOSFET[86]: (a) With split gate and SBD embedded; (b) with expansion of P+ source contact; (c) with multi-layer N-type interval buffer layer; (d) with expansion of P+ source contact and multi-layer N-type interval buffer layer.

    图 12  抗SEGR的SiC MOSFET器件加固结构示意图 (a) HEC-MOSFET[91], (b) BSE-MOSFET[92], (c) IM-DTMOSFET[93]

    Fig. 12.  Hardening structure diagram of SiC MOSFET device against SEGR: (a) HEC-MOSFET[91]; (b) BSE-MOSFET[92]; (c) IM-DTMOSFET[93].

    表 1  平面型SiC MOSFET单粒子效应研究汇总

    Table 1.  Summary of research on single event effect of planar SiC MOSFET.

    器件设计 研究类型 LET/(MeV·cm2·mg–1) VSEB/V 文献
    [1200 V] VDMOSFET Experiment 35.8 350 [6]
    [1200 V] VDMOSFET Experiment 7.7—49.1 580—700 [46]
    [1200 V] VDMOSFET Experiment 0.26—118 200—600 [49]
    [1200 V] VDMOSFET Experiment 70.2 800 [51]
    [1200 V] VDMOSFET Experiment 10—65 500—600 [52]
    [1200 V] VDMOSFET Experiment 81.3 400 [53]
    [1200 V] VDMOSFET Experiment 38.85 400 [54]
    下载: 导出CSV

    表 2  重离子诱导效应总结(阈值)[62]

    Table 2.  Summary of heavy-ion-induced effects (threshold values)[62].

    粒子 LET
    /(MeV·cm2·mg–1)
    Microdose
    /V
    SELC
    /V
    SEGR
    /V
    Xe 62.5 40 70 120
    Kr 32.4 70 120 400
    Ni 20.4 90 120
    Fe 14.53 430 450 500
    Ca 13.5 520 530 550
    下载: 导出CSV

    表 3  沟槽型SiC MOSFET单粒子效应研究汇总

    Table 3.  Summary of research on single event effect of trench SiC MOSFET.

    器件设计研究类型LET
    /(MeV·cm2·mg–1)
    VSEB
    /V
    文献
    [650 V] DTMOSFET
    [1200 V] DTMOSFET
    Simulation
    Experiment
    151
    81.3
    70
    <504
    [55]
    [56]
    [1512 V] DTMOSFETSimulation15.1597[58]
    [900 V] TB-QVDMOSFETSimulation75.5478[64]
    [1260 V] CoolSiC Trench MOSFET
    [1200 V] TGMOSFET
    Simulation
    Experiment
    67.95
    75
    600
    500
    [65]
    [66]
    下载: 导出CSV

    表 4  几种主流的SiC MOSFET单粒子效应加固设计汇总

    Table 4.  Summary of several mainstream hardening design of SiC MOSFET single event effect.

    器件类型 加固方法 加固机理 文献
    NITG-MOSFET 多层缓冲层(MBLs) MBLs可以降低N-漂移层与N+衬底界面处的峰值电场强度,
    抑制二次击穿.
    [83]
    IM-DTMOSFET p型源极缓冲层(P-SBL)和
    多缓冲层(MBLs)
    P-SBL和MBLs可以缓解高能重离子撞击后瞬态脉冲
    引起的器件局部温度升高.
    [93]
    STG-MOSFET 源接触处P+屏蔽区和
    高k介质材料(HfO2)
    源接触处P+屏蔽区可抑制寄生BJT导通, 高k介电材料
    可降低栅氧化层的最大电场强度.
    [99]
    HEC-MOSFET JFET中间区域P+
    柱和电流扩散层(CSL)
    P+柱能去除JFET区域周围积累的多余空穴, CSL可以扩大能量
    耗散面积以及在高VDS偏置下提供良好的夹断效果.
    [100]
    DGF-UMOSFET 接地和浮空p-埋层 p-埋层有效降低栅极氧化界面和衬底界面处的晶格最高温度. [101]
    DT-HJDUMOSFET 集成异质结二极管(HJD) HJD结构能抑制寄生BJT的导通并且使产生的空穴电流
    可以有效地泄露, 提高SEB性能.
    [102]
    SH-MOSFET 源极侧边多晶硅/
    碳化硅异质结
    源极侧边poly-Si区域不仅充当空穴放电的通道, 降低氧化层
    下方积累的空穴浓度, 增强SEGR电阻, 还能有效降低
    寄生BJT的电流增益, 改善SEB性能.
    [103]
    下载: 导出CSV
  • [1]

    Winokur P S, Schwank J R, McWhorter P J, Dressendorfer P V, Turpin D C 1984 IEEE Trans. Nucl. Sci. 31 1453Google Scholar

    [2]

    Frisina F, Gombia E, Chirco P, Tavolo N, Mosca R, Fuochi P G 1990 Radiat. Phys. Chem. 35 500

    [3]

    Hazdra P, Vobecky J, Brand K 2002 Nucl. Instrum. Methods Res. , Sect. B 186 414Google Scholar

    [4]

    Meng X, Yang H, Kang G, Wang J, Jia H, Chen P, Tsien P 2003 J. Mater. Sci. Mater. Electron. 14 199Google Scholar

    [5]

    Muthuseenu K, Barnaby H J, Galloway K F, Koziukov A E, Maksimenko T A, Vyrostkov M Y Khasan K B, Kalashnikova A A, Privat A 2021 IEEE Trans. Nucl. Sci. 68 611Google Scholar

    [6]

    于庆奎, 曹爽, 张洪伟, 梅博, 孙毅, 王贺, 李晓亮, 吕贺, 李鹏伟, 唐民 2019 原子能科学技术 53 2114Google Scholar

    Yu Q K, Cao S, Zhang H W, Mei B, Sun Y, Wang H, Li X L, Lü H, Li P W, Tang M 2019 At. Energy Sci. Technol. 53 2114Google Scholar

    [7]

    Asai H, Nashiyama I, Sugimoto K, Shiba K, Sakaide Y, Ishimaru Y 2014 IEEE Trans. Nucl. Sci. 61 3109Google Scholar

    [8]

    Niskanen K, Germanicus R C, Michez A, Wrobel F, Boch J, Saigné F 2021 IEEE Trans. Nucl. Sci. 68 1623Google Scholar

    [9]

    Baliga B J 1989 IEEE Electron Device Lett. 10 455Google Scholar

    [10]

    She X, Huang A Q, Lucía ó, Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193Google Scholar

    [11]

    Palmour J W 2014 Proceedings of 2014 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 1–17,2014 p1

    [12]

    Saks N S, Mani S S, Agarwal A K 2000 Appl. Phys. Lett. 76 2250Google Scholar

    [13]

    Williams R K, Darwish M N, Blanchard R A, Siemieniec R, Rutter P, Kawaguchi Y 2017 IEEE Trans. Electron Devices 64 674Google Scholar

    [14]

    Zhu S, Shi L, Jin M, Qian J, Bhattacharya M, Maddi H L R 2023 Proceedings of 2023 IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, USA, March 26–30,2023 pp1–5

    [15]

    Rohm https://techweb.rohm.com/product/power-device/sic/6574 [2025-02-25]

    [16]

    Rohm https://www.rohm.com/news-detail?news-title = new-4th-gen-sic-mosfets&defaultGroupId = false [2025-02-25]

    [17]

    孙培元, 孙立杰, 薛哲, 佘晓亮, 韩若麟, 吴宇微, 王来利, 张峰 2023 电子与封装 23 010111

    Sun P Y, Sun L J, Xue Z, She X L, Han R L, Wu Y W, Wang L L, Zhang F 2023 Electron. Packag. 23 010111

    [18]

    Infineon Technologies AG https://www.signalintegrityjournal.com/articles/3493-infineon-introduces-coolsic-mosfet-g2-the-next-generation-of-silicon-carbide-technology-for-high-performance-systems-that-drive-decarbonization [2025-02-25]

    [19]

    Lay L https://www.st.com/content/dam/is20/document/PE3-2_Lay_Lv_ST_SIC_Mosfet_Diode_product_and_application_Industrial_summit_Version2_EN.pdf [2025-02-25]

    [20]

    Onsemi https://www.onsemi.cn/company/news-media/press-announcements/en/next-generation-onsemi-1200-v-elitesic-m3s-devices-enhance-efficiency-of-electric-vehicles-and-energy-infrastructure-applications [2025-02-25]

    [21]

    黄润华, 陶永洪, 柏松, 陈刚, 汪玲, 刘奥, 卫能, 李赟, 赵志飞 2014 固体电子学研究与进展 34 510

    Huang R H, Tao Y H, Bai S, Chen G, Wang L, Liu A, Wei N, Li Y, Zhao Z F 2014 Res. Prog. Solid State Electron. 34 510

    [22]

    Yuan J, Wang K, Guo F, Xu S D, Cheng Z J, Chen W, Wu Y Y, Peng R S, Zhu L Y, Li M Z 下一代碳化硅沟槽器件技术--技术文章频道-《化合物半导体》 [2025-02-25]

    袁俊, 王宽, 郭飞, 徐少东, 成志杰, 陈伟, 吴阳阳, 彭若诗, 朱厉阳, 李明哲 下一代碳化硅沟槽器件技术--技术文章频道-《化合物半导体》 [2025-02-25]

    [23]

    Yuan J 2021 CN202111363556.3 [2025-01-28] (in Chinese) {袁俊 2021 CN202111363556.3 [2025-01-28]}

    [24]

    Chen W, Guo F, Cheng Z J, Wang K, Wu Y Y, Yuan J 2024 CN202411262429.8 [2024-09-09] (in Chinese) {陈伟, 郭飞, 成志杰, 王宽, 吴阳阳, 袁俊 2024 CN202411262429.8 [2024-09-09]}

    [25]

    Liu Q J, Song G, Luo Y H, He Q M, Wang Y F, Yao Y, Li C Z, Xiao Q, Luo H H 2024 CN202411278696.4 [2024-09-12] (in Chinese) {刘启军, 宋瓘, 罗烨辉, 何启鸣, 王亚飞, 姚尧, 李诚瞻, 肖强, 罗海辉 2024 CN202411278696.4 [2024-09-12]}

    [26]

    Wang Y F, Chen X M, Li C Z, Luo H H 2020 CN202010591568.0 [ (in Chinese) {王亚飞, 陈喜明, 李诚瞻, 罗海辉 2020 CN202010591568.0 [2022-09-09]}

    [27]

    Tanaka S, Rajanna K, Abe T, Esashi M 2001 J. Vac. Sci. Technol. , B 19 2173Google Scholar

    [28]

    Palmour J W, Edmond J A, Kong H S, Jr C 1993 Proceedings of Silicon carbide and related materials: Fifth international conference on SiC carbide and related materials (ICSCRM’93), Washington, DC, USA, November 1-3, 1993 p499-p502

    [29]

    Tan J, Cooper J A, Melloch M R 1998 IEEE Electron Device Lett. 19 487Google Scholar

    [30]

    Shen Z, Zhang F, Yan G, Wen Z, Zhao W, Wang L 2020 IEEE Trans. Electron. Devices 67 4046Google Scholar

    [31]

    Nakamura T, Nakano Y, Aketa M, Nakamura R, Mitani S, Sakairi H 2011 Proceedings of 2011 International Electron Devices Meeting, Washington, DC, USA, December 05-07, 2011 p26.5. 1-p26.5. 3

    [32]

    Harada S, Kobayashi Y, Kinoshita A, Ohse N, Kojima T, Lwaya M 2016 Proceedings of 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), Halkidiki, Greece, September 25-29, 2016 p1

    [33]

    Kim W, Lichtenwalner D J, Ryu S H, Islam N 2022 US 2022/0157959A1

    [34]

    张跃, 张腾, 黄润华, 柏松 2022 电子元件与材料 41 376

    Zhang Y, Zhang T, Huang R, Bo S 2022 Electron. Compon. Mater. 41 376

    [35]

    Saitoh Y, Masuda T, Tamaso H, Notsu H, Michikoshi H, Hiratsuka K 2016 Proceedings of 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), Halkidiki, Greece, September 25–29, 2016 p1

    [36]

    Uchida K, Hiyoshi T, Saito Y, Tsuno T 2020 Mater. Sci. Forum 1004 776Google Scholar

    [37]

    Rycroft M J 1995 J. Atmos. Terr. Phys. 57 1672

    [38]

    Niskanen K, Touboul A D, Germanicus R C, Michez A, Javanainen A, Wrobel F 2020 IEEE Trans. Nucl. Sci. 67 1365Google Scholar

    [39]

    Liang X, Zhao J, Zheng Q, Cui J, Yang S, Wang B, Zhang D, Yu X, Guo Q 2021 Radiat. Eff. Defects Solids. 176 1038Google Scholar

    [40]

    Mcpherson J A, Hitchcock C W, Chow T P, Ji W, Woodworth A A 2021 IEEE Trans. Nucl. Sci. 68 651Google Scholar

    [41]

    Mizuta E, Kuboyama S, Abe H, Iwata Y, Tamura T 2014 IEEE Trans. Nucl. Sci. 61 1924Google Scholar

    [42]

    Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J M 2018 IEEE Trans. Nucl. Sci. 65 1951Google Scholar

    [43]

    Oberg D L, Wert J L 1987 IEEE Trans. Nucl. Sci. 34 1736Google Scholar

    [44]

    Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O, Alia R G 2020 IEEE Trans. Nucl. Sci. 67 1381Google Scholar

    [45]

    Lauenstein J, Casey M, Ladbury R, Kim H, Phan A, Topper A 2021 Proceedings of 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, March 21-25,2021 p1-p8

    [46]

    Martinella C, Natzk P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U, Javanainen A 2022 Microelectron. Reliab. 128 114423Google Scholar

    [47]

    王敬轩, 吴昊, 王永维, 李永平, 王勇, 杨霏 2016 智能电网 4 1078

    Wang J X, Wu H, Wang Y W, Li Y P, Wang Y, Yang F 2016 Smart Grid 4 1078

    [48]

    刘忠永, 蔡理, 刘小强, 刘保军, 崔焕卿, 杨晓阔 2017 微纳电子技术 54 80

    Liu Z Y, Cai L, Liu X Q, Liu B J, Cui H Q, Yang X K 2017 Micronanoelectron. Technol. 54 80

    [49]

    于庆奎, 曹爽, 张琛睿, 孙毅, 梅博, 王乾元, 王贺, 魏志超, 张洪伟, 张腾, 柏松 2023 原子能科学技术 57 2254Google Scholar

    Yu Q K, Cao S, Zhang S R, Sun Y, Mei B, Wang Q Y, Wang H, Wei Z C, Zhang H W, Zhang T, Bai S 2023 At. Energy Sci. Technol. 57 2254Google Scholar

    [50]

    Zhao S, Liu Y, Yan X, Hu P, Li X, Chen Q, Zhai P, Zhang T, Jiao Y, Sun Y, Liu J 2025 Microelectron. Reliab. 167 115663Google Scholar

    [51]

    Zhang H, Guo H X, Lei Z F, Peng C, Zhang Z A, Chen Z W, Sun C H, He Y J, Zhang F Q, Pan X Y, Zhong X L, Ouyang X P 2023 Chin. Phys. B 32 028504Google Scholar

    [52]

    Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F 2020 IEEE Trans. Nucl. Sci. 67 22Google Scholar

    [53]

    Peng C, Lei Z, Chen Z, Yue S, Zhang Z, He Y, Huang Y 2021 IET Power Electron. 14 1700Google Scholar

    [54]

    Wu L, Dong S, Xu X, Wei Y, Liu Z, Li W, Yang J, Li X 2024 IEEE Trans. Nucl. Sci. 71 1978Google Scholar

    [55]

    Zhou X T, Tang Y, Jia Y P, Hu D Q, Wu Y, Xia T, Gong H, Pang H 2019 IEEE Trans. Nucl. Sci. 66 2312Google Scholar

    [56]

    Wang L, Jia Y, Zhou X, Zhao Y, Wang L, Li T, Hu D, Wu Y, Deng Z 2022 Microelectron. Reliab. 137 114770Google Scholar

    [57]

    彭锦秋 2020 硕士学位论文 (兰州: 兰州大学)

    Peng J Q 2020 M. S. Thesis (Lanzhou: Lanzhou University

    [58]

    彭锦秋, 张行, 吴康, 刘兴宇, 杨旭, 白晓厚, 韦峥, 姚泽恩, 王俊润, 蒋天植, 包超, 卢佳玮, 张宇 2023 原子核物理评论 40 459Google Scholar

    Peng J Q, Zhang X, Wu K, Liu X Y, Yang X, Bai X H, Wei Z, Yao Z E, Wang J R, Jiang T Z, Bao C, Lu J W, Zhang Y 2023 Nucl. Phys. Rev. 40 459Google Scholar

    [59]

    Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466 [成国栋, 陆江, 翟露青, 白云, 田晓丽, 左欣欣, 杨成樾, 汤益丹, 陈宏, 刘新宇 2022 微电子学 52 466]]

    Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466

    [60]

    Martinella C, Race S, Stark R, Alia R G, Javanainen A, Grossner U 2023 IEEE Trans. Nucl. Sci. 70 1844Google Scholar

    [61]

    Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Lauenstein J M 2021 IEEE Trans. Nucl. Sci. 68 1430Google Scholar

    [62]

    Martinella C, Race S, Für N, Goncalves de Medeiros H, Zhou H, Grossner U 2024 IEEE Trans. Nucl. Sci. 71 1440Google Scholar

    [63]

    李洋帆, 郭红霞, 张鸿, 白如雪, 张凤祁, 马武英, 钟向丽, 李济芳, 卢小杰 2024 物理学报 73 026103

    Li Y F, Guo H X, Zhang H, Bai R X, Zhang F Q, Ma W Y, Zhong X L, Li J F, Lu X J 2024 Acta Phys. Sin. 73 026103

    [64]

    Shi J, Wang Y, Fei X, Sun B, Song Y, Liu Y, Zhang W 2024 IEEE Access 13 5023

    [65]

    Yu C, Bao M, Wang Y, Guo H, Han Y, Hu H 2022 IEEE Trans. Device Mater. Reliab. 22 469Google Scholar

    [66]

    Wang Y, Zhou J, Lin M, Li X, Yang J, Cao F 2022 IEEE Trans. Electron Devices 10 373

    [67]

    Hohl J H, Johnnson G H 1989 IEEE Trans. Nucl. Sci. 36 2260Google Scholar

    [68]

    Kuboyama S, Matsuda S, Kanno T, Ishii T 1993 IEEE Trans. Nucl. Sci. 39 1698

    [69]

    Titus J L 2013 IEEE Trans. Nucl. Sci. 60 1912Google Scholar

    [70]

    Zhang X 2006 Ph. D. Dissertation (MD, USA: University of Maryland, College Park

    [71]

    Griffoni A, Duivenbode J v, Linten D, Simoen E, Rech P, Dilillo L 2011 Proceedings of 2011 12th European Conference on Radiation and Its Effects on Components and Systems, Sevilla, Spain, September 19-23, 2011 pp226–231

    [72]

    Ikpe S A, Lauenstein J M, Carr G A, Hunter D, Ludwing L L, Wood W 2016 Proceedings of 2016 IEEE International Reliability Physics Symposium (IRPS), Pasadena, CA, USA, April 17-21,2016 p1

    [73]

    Johnson R A, Witulski A F, Ball D R, Galloway K F, Sternberg A L 2019 IEEE Trans. Nucl. Sci. 66 1694Google Scholar

    [74]

    Shoji T, Nishida S, Hamada K, Tadano H 2015 Microelectron. Reliab. 55 1517Google Scholar

    [75]

    Wang H, Gu J, Huang X, Zhang J, Jing Y 2024 Microelectron. Reliab. 154 115344Google Scholar

    [76]

    McPherson J A, Hitchcock C W, Chow T P, Ji W 2020 Mater. Sci. Forum. 1004 889Google Scholar

    [77]

    Zhang Z, Yuan H, Liu K, Zhang Y, Liu Y, Han C 2024 IEEE Electron Device Lett. 45 2495Google Scholar

    [78]

    Zhang N, Tang X, Song Q, Liu K, Zhang Z, Yuan H 2023 Proceedings of 2023 5th International Conference on Radiation Effects of Electronic Devices (ICREED), Kunming, China, May 24–27, 2023 pp1–3

    [79]

    Waskiewicz A E, Groninger J W, Strahan V H, Long D M 1986 IEEE Trans. Nucl. Sci. 33 1710Google Scholar

    [80]

    Lauenstein J M, Casey M, Topper A, Wilcox E, Phan A, Ikpe S, LaBel K 2015 Proceedings of 2015 IEEE Nuclear and Space Radiation Effects Conference (NSREC), Boston, Massachusetts, July 16,2015 p1

    [81]

    Liu S, Titus J L, Boden M 2007 IEEE Trans. Nucl. Sci. 54 2554Google Scholar

    [82]

    Zhou X, Jia Y, Hu D, Wu Y 2019 IEEE Trans. Electron Devices 66 2551Google Scholar

    [83]

    Wang Y, Lin M, Li X, Wu X, Yang J, Bao M 2019 IEEE Trans. Electron Devices 66 4264Google Scholar

    [84]

    Jiang L, Liu J, Tian X, Chen H, Tang Y, Bai Y 2020 IEEE Trans. Electron Devices 67 3698Google Scholar

    [85]

    林茂 2020 硕士学位论文 (杭州: 杭州电子科技大学)

    Lin M 2020 M. S. Thesis (Hangzhou: Hangzhou Dianzi University

    [86]

    Liao Q, Liu H 2024 Micromachines 15 642Google Scholar

    [87]

    Huang S, Amaratunga A J, Udrea F 2000 IEEE Trans. Nucl. Sci. 47 2640Google Scholar

    [88]

    Zerarka M, Austin P, Morancho F, Isoird K, Arbess H, Tasselli J 2014 IET Circuits Devices Syst. 8 197Google Scholar

    [89]

    Lu J, Liu H, Cai X, Luo J, Li B, Li B, Wang L, Han Z 2018 J. Semicond. 39 034003Google Scholar

    [90]

    Yu C, Wang Y, Cao F, Huang L, Wang Y 2015 IEEE Trans. Electron Devices 62 143Google Scholar

    [91]

    杨余 2023 硕士学位论文 (湖南: 湖南大学)

    Yang Y 2023 M. S. Thesis (Hunan: Hunan University

    [92]

    Wang Y, Liu T, Qian L, Wu H, Yu Y, Tao J, Cheng Z, Hu S 2023 Micromachines 14 688Google Scholar

    [93]

    Sun S, Chen F, Sun Y, Li Y, Yang K, Tang X 2024 Microelectron. Reliab. 164 115569

    [94]

    Ranjan S, Majumder S, Naugarhiya A 2020 Proceedings of 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, February 28-29, 2020 pp272–275

    [95]

    Amjath M, Ranjan S, Naugarhiya A 2022 Proceedings of 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhiai, India, April 21–22,2022 pp1–5

    [96]

    Hohl J, Johnnson G 1989 IEEE Trans. Nucl. Sci. 36 2260Google Scholar

    [97]

    Darwish M, Yue C, Lui K H, Giles F, Chan B, Chen K I, Pattanayak D, Chen Q, Terrill K, Owyang K 2003 Proceedings of the ISPSD ‘03, 2003 IEEE 15th International Symposium on Power Semiconductor Devices and ICs, Cambridge, UK, April 14–17 2003 pp24–27

    [98]

    Lu J, Liu H, Luo J, Wang L, Li B, Li B, Zhang G, Han Z 2016 Proceedings of 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Bremen, Germany, September 19–23, 2016 pp1–5

    [99]

    Liu Y, Wang Y, Yu C H, Luo X, Cao F 2018 Superlattices Microstruct. 122 165Google Scholar

    [100]

    Liang S, Yang Y, Chen J, Shu L, Wang L, Wang J 2024 IEEE Trans. Device Mater. Reliab. 24 507Google Scholar

    [101]

    Shen P, Wang Y, Li X J, Yang J, Zheng L 2023 Microelectron. Reliab. 142 114931Google Scholar

    [102]

    Kim J, Kim K 2022 IEEE Trans. Device Mater. Reliab. 22 164Google Scholar

    [103]

    Yu Q, Chen W, Huang J, Shen Z, Lin Z, Peng H, Shu H, Li J 2025 Micro Nanostruct. 198 208064Google Scholar

  • [1] 李洋帆, 郭红霞, 张鸿, 白如雪, 张凤祁, 马武英, 钟向丽, 李济芳, 卢小杰. 双沟槽SiC 金属-氧化物-半导体型场效应管重离子单粒子效应. 物理学报, doi: 10.7498/aps.73.20231440
    [2] 彭超, 雷志锋, 张战刚, 何玉娟, 马腾, 蔡宗棋, 陈义强. 中子辐射导致的SiC功率器件漏电增加特性研究. 物理学报, doi: 10.7498/aps.72.20230976
    [3] 崔艺馨, 马英起, 上官士鹏, 康玄武, 刘鹏程, 韩建伟. 空间用GaN功率器件单粒子烧毁效应激光定量模拟技术研究. 物理学报, doi: 10.7498/aps.71.20212297
    [4] 蒲瑾, 杨树政, 林恺. 洛伦兹破缺理论与Vaidya黑洞弯曲时空中的Dirac粒子隧穿辐射特征. 物理学报, doi: 10.7498/aps.68.20190437
    [5] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康. 硅单粒子位移损伤多尺度模拟研究. 物理学报, doi: 10.7498/aps.65.084209
    [6] 李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新. 锗硅异质结双极晶体管单粒子效应加固设计与仿真. 物理学报, doi: 10.7498/aps.64.118502
    [7] 丛忠超, 余学峰, 崔江维, 郑齐文, 郭旗, 孙静, 汪波, 马武英, 玛丽娅, 周航. 静态随机存储器总剂量辐射损伤的在线与离线测试方法. 物理学报, doi: 10.7498/aps.63.086101
    [8] 岳龙, 吴宜勇, 张延清, 胡建民, 孙承月, 郝明明, 兰慕杰. 质子辐射损伤对单结GaAs/Ge太阳电池暗特性参数的影响. 物理学报, doi: 10.7498/aps.63.188101
    [9] 张兴尧, 郭旗, 陆妩, 张孝富, 郑齐文, 崔江维, 李豫东, 周东. 串口型铁电存储器总剂量辐射损伤效应和退火特性. 物理学报, doi: 10.7498/aps.62.156107
    [10] 李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹. 不同粒子辐射条件下CC4013器件辐射损伤研究. 物理学报, doi: 10.7498/aps.62.058502
    [11] 高博, 刘刚, 王立新, 韩郑生, 张彦飞, 王春林, 温景超. 国产星用VDMOS器件总剂量辐射损伤效应研究. 物理学报, doi: 10.7498/aps.61.176107
    [12] 马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健. 光纤布拉格光栅辐射损伤及其对光谱特性的影响. 物理学报, doi: 10.7498/aps.61.064201
    [13] 吴华英, 张鹤鸣, 宋建军, 胡辉勇. 单轴应变硅nMOSFET栅隧穿电流模型. 物理学报, doi: 10.7498/aps.60.097302
    [14] 杨树政, 林恺. Kerr-de Sitter黑洞任意自旋粒子的隧穿辐射及其熵修正. 物理学报, doi: 10.7498/aps.59.5266
    [15] 周亮, 张靖仪. 带电带磁粒子的量子隧穿辐射. 物理学报, doi: 10.7498/aps.59.4380
    [16] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较. 物理学报, doi: 10.7498/aps.55.3546
    [17] 蒙 康, 姜森林, 侯利娜, 李 蝉, 王 坤, 丁志博, 姚淑德. Mg+注入对GaN晶体辐射损伤的研究. 物理学报, doi: 10.7498/aps.55.2476
    [18] 张靖仪, 赵 峥. 静质量不为零的粒子的量子隧穿辐射. 物理学报, doi: 10.7498/aps.55.3796
    [19] 宋祥云, 温树林. 碲镉汞辐射损伤的微观过程. 物理学报, doi: 10.7498/aps.37.301
    [20] 戴元本. ω粒子的辐射衰变. 物理学报, doi: 10.7498/aps.20.131
计量
  • 文章访问数:  223
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-04
  • 修回日期:  2025-04-30
  • 上网日期:  2025-05-10

/

返回文章
返回