-
在空间核反应堆系统、深空探测器电源模块以及运载火箭推进装置等极端辐射环境中, 高压大功率器件展现出重要的应用价值. 碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)具备耐高压、耐高温和低导通损耗等优点, 能够使宇航电源的效率得到进一步提升. 因此, SiC功率MOSFET空间辐射效应和抗辐射加固技术迅速成为行业的研究热点. 首先, 本文回顾了SiC功率MOSFET器件的发展历程, 分析了从平面栅技术到沟槽栅技术的演变过程, 并对未来新型SiC功率MOSFET技术进行了展望. 其次, 针对SiC功率MOSFET在复杂空间环境下面临的辐射损伤问题, 着重梳理了目前国内外关于重离子辐照SiC功率MOSFET引起的单粒子烧毁与单粒子栅穿的相关研究成果. 最后, 基于SiC功率MOSFET单粒子辐射损伤机制分析, 总结了目前SiC功率MOSFET抗辐射加固技术的研究进展, 为研究SiC功率MOSFET单粒子效应损伤机制以及改进其抗辐射加固技术提供参考.
-
关键词:
- SiC功率MOSFET /
- 单粒子烧毁 /
- 单粒子栅穿 /
- 辐射损伤机制 /
- 抗辐射加固
In extreme radiation environments, such as space nuclear reactor systems, deep-space probe power modules, and launch vehicle propulsion systems, high-voltage and high-power devices demonstrate significant practical value. Silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) possess advantages including high breakdown voltage, thermal stability, and low on-state resistance, enabling further improvements in aerospace power supply efficiency. Therefore, research on radiation effects and radiation-hardening techniques for SiC power MOSFETs has rapidly emerged as a critical focus in the industry. Firstly, this paper reviews the developmental evolution of SiC power MOSFETs, analyzes the necessity of transitioning from planar gate to trench-gate architectures, and provides future prospects for advanced SiC power MOSFET technologies. Secondly, it systematically compiles current research achievements in single event burnout (SEB) and single event gate rupture (SEGR) caused by heavy ion irradiation in SiC power MOSFETs. Finally, based on a mechanistic analysis of radiation-induced single event damage in SiC power MOSFETs, this study summarizes recent progress of radiation-hardening technologies, aiming to provide valuable ideas for understanding radiation induced failure mechanisms and enhancing the radiation tolerance of SiC power MOSFETs.-
Keywords:
- SiC power metal-oxide-semiconductor field-effect transistors /
- single event burnout /
- single event gate rupture /
- radiation damage mechanism /
- radiation hardening
-
图 3 几种沟槽型SiC MOSFET栅氧屏蔽结构示意图 (a) ROHM双沟槽结构[15]; (b) Infineon非对称沟槽结构[17]; (c)直接屏蔽结构[29]; (d)间接屏蔽结构[32]; (e)台阶沟槽结构[33]; (f) P+埋层V型沟槽结构[35]
Fig. 3. Schematic diagrams of several trench-type SiC MOSFET gate oxide shielding structures (not to scale): (a) ROHM’s double-trench structure[15]; (b) Infineon’s asymmetric trench structure[17]; (c) direct shielding structure [29]; (d) indirect shielding structure[32]; (e) stepped trench structure[33]; (f) P+ buried layer V-shaped trench structure[35].
图 6 Ar, Fe, Kr和Xe离子辐照实验结果[46] (a)器件在VDS = 60 V下Xe离子辐照时的ID-VGS和IG-VGS特性曲线; (b)辐照后VDS扫描测试, 所有器件在580 V < VDS < 700 V范围内失效. 原始状态下的ID和IG以灰色显示
Fig. 6. Results from irradiations with Ar, Fe, Kr and Xe ions[46]: (a) ID-VGS and IG-VGS of device exposed to Xe at VDS = 60 V; (b) post-irradiation VDS sweep; all the devices failed at 580 V < VDS < 700 V. The pristine ID and IG are shown in gray.
图 8 (a) 在LET = 0.1 pC/μm, VDS = 400 V条件下, 无N+源和有N+源器件在30, 100 ps和1 ns时离子撞击后的电子电流密度分布 [75]; (b) 垂直N沟道双扩散功率MOSFET辐射下的一维电场和载流子分布[76]
Fig. 8. (a) Electron current density distribution at 30, 100 ps, and 1 ns after the ion strike for device without N+ source and with N+ source (LET = 0.1 pC/μm, VDS = 400 V) [75]; (b) vertical N-channel double-diffused power MOSFET under radiation strike with 1D electric field distribution and carrier mapping[76].
图 10 在LET = 0.1 pC/μm, VDS = 650 V条件下, 离子撞击后器件中心的内部电场变化图[75] (a) VDMOSFET; (b) DBL-MOSFET; (c) GBL-MOSFET; (d) SBL-MOSFET
Fig. 10. The variation of internal electric field at the device center after the ion strike (LET = 0.1 pC/μm, VDS = 650 V) [75]: (a) VDMOSFET; (b) DBL-MOSFET; (c) GBL-MOSFET; (d) SBL-MOSFET.
图 11 1200 V SiC MOSFET结构示意图[86] (a)分裂栅与集成肖特基势垒二极管(SBD)结构; (b)扩展型P+源接触结构; (c)多层N型间隔缓冲层结构; (d)扩展型P+源接触与多层N型间隔缓冲层的复合结构
Fig. 11. Schematic diagram of 1200 V SiC MOSFET[86]: (a) With split gate and SBD embedded; (b) with expansion of P+ source contact; (c) with multi-layer N-type interval buffer layer; (d) with expansion of P+ source contact and multi-layer N-type interval buffer layer.
表 1 平面型SiC MOSFET单粒子效应研究汇总
Table 1. Summary of research on single event effect of planar SiC MOSFET.
器件设计 研究类型 LET/(MeV·cm2·mg–1) VSEB/V 文献 [1200 V] VDMOSFET Experiment 35.8 350 [6] [1200 V] VDMOSFET Experiment 7.7—49.1 580—700 [46] [1200 V] VDMOSFET Experiment 0.26—118 200—600 [49] [1200 V] VDMOSFET Experiment 70.2 800 [51] [1200 V] VDMOSFET Experiment 10—65 500—600 [52] [1200 V] VDMOSFET Experiment 81.3 400 [53] [1200 V] VDMOSFET Experiment 38.85 400 [54] 粒子 LET
/(MeV·cm2·mg–1)Microdose
/VSELC
/VSEGR
/VXe 62.5 40 70 120 Kr 32.4 70 120 400 Ni 20.4 90 120 — Fe 14.53 430 450 500 Ca 13.5 520 530 550 表 3 沟槽型SiC MOSFET单粒子效应研究汇总
Table 3. Summary of research on single event effect of trench SiC MOSFET.
表 4 几种主流的SiC MOSFET单粒子效应加固设计汇总
Table 4. Summary of several mainstream hardening design of SiC MOSFET single event effect.
器件类型 加固方法 加固机理 文献 NITG-MOSFET 多层缓冲层(MBLs) MBLs可以降低N-漂移层与N+衬底界面处的峰值电场强度,
抑制二次击穿.[83] IM-DTMOSFET p型源极缓冲层(P-SBL)和
多缓冲层(MBLs)P-SBL和MBLs可以缓解高能重离子撞击后瞬态脉冲
引起的器件局部温度升高.[93] STG-MOSFET 源接触处P+屏蔽区和
高k介质材料(HfO2)源接触处P+屏蔽区可抑制寄生BJT导通, 高k介电材料
可降低栅氧化层的最大电场强度.[99] HEC-MOSFET JFET中间区域P+
柱和电流扩散层(CSL)P+柱能去除JFET区域周围积累的多余空穴, CSL可以扩大能量
耗散面积以及在高VDS偏置下提供良好的夹断效果.[100] DGF-UMOSFET 接地和浮空p-埋层 p-埋层有效降低栅极氧化界面和衬底界面处的晶格最高温度. [101] DT-HJDUMOSFET 集成异质结二极管(HJD) HJD结构能抑制寄生BJT的导通并且使产生的空穴电流
可以有效地泄露, 提高SEB性能.[102] SH-MOSFET 源极侧边多晶硅/
碳化硅异质结源极侧边poly-Si区域不仅充当空穴放电的通道, 降低氧化层
下方积累的空穴浓度, 增强SEGR电阻, 还能有效降低
寄生BJT的电流增益, 改善SEB性能.[103] -
[1] Winokur P S, Schwank J R, McWhorter P J, Dressendorfer P V, Turpin D C 1984 IEEE Trans. Nucl. Sci. 31 1453
Google Scholar
[2] Frisina F, Gombia E, Chirco P, Tavolo N, Mosca R, Fuochi P G 1990 Radiat. Phys. Chem. 35 500
[3] Hazdra P, Vobecky J, Brand K 2002 Nucl. Instrum. Methods Res. , Sect. B 186 414
Google Scholar
[4] Meng X, Yang H, Kang G, Wang J, Jia H, Chen P, Tsien P 2003 J. Mater. Sci. Mater. Electron. 14 199
Google Scholar
[5] Muthuseenu K, Barnaby H J, Galloway K F, Koziukov A E, Maksimenko T A, Vyrostkov M Y Khasan K B, Kalashnikova A A, Privat A 2021 IEEE Trans. Nucl. Sci. 68 611
Google Scholar
[6] 于庆奎, 曹爽, 张洪伟, 梅博, 孙毅, 王贺, 李晓亮, 吕贺, 李鹏伟, 唐民 2019 原子能科学技术 53 2114
Google Scholar
Yu Q K, Cao S, Zhang H W, Mei B, Sun Y, Wang H, Li X L, Lü H, Li P W, Tang M 2019 At. Energy Sci. Technol. 53 2114
Google Scholar
[7] Asai H, Nashiyama I, Sugimoto K, Shiba K, Sakaide Y, Ishimaru Y 2014 IEEE Trans. Nucl. Sci. 61 3109
Google Scholar
[8] Niskanen K, Germanicus R C, Michez A, Wrobel F, Boch J, Saigné F 2021 IEEE Trans. Nucl. Sci. 68 1623
Google Scholar
[9] Baliga B J 1989 IEEE Electron Device Lett. 10 455
Google Scholar
[10] She X, Huang A Q, Lucía ó, Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193
Google Scholar
[11] Palmour J W 2014 Proceedings of 2014 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 1–17,2014 p1
[12] Saks N S, Mani S S, Agarwal A K 2000 Appl. Phys. Lett. 76 2250
Google Scholar
[13] Williams R K, Darwish M N, Blanchard R A, Siemieniec R, Rutter P, Kawaguchi Y 2017 IEEE Trans. Electron Devices 64 674
Google Scholar
[14] Zhu S, Shi L, Jin M, Qian J, Bhattacharya M, Maddi H L R 2023 Proceedings of 2023 IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, USA, March 26–30,2023 pp1–5
[15] Rohm https://techweb.rohm.com/product/power-device/sic/6574 [2025-02-25]
[16] Rohm https://www.rohm.com/news-detail?news-title = new-4th-gen-sic-mosfets&defaultGroupId = false [2025-02-25]
[17] 孙培元, 孙立杰, 薛哲, 佘晓亮, 韩若麟, 吴宇微, 王来利, 张峰 2023 电子与封装 23 010111
Sun P Y, Sun L J, Xue Z, She X L, Han R L, Wu Y W, Wang L L, Zhang F 2023 Electron. Packag. 23 010111
[18] Infineon Technologies AG https://www.signalintegrityjournal.com/articles/3493-infineon-introduces-coolsic-mosfet-g2-the-next-generation-of-silicon-carbide-technology-for-high-performance-systems-that-drive-decarbonization [2025-02-25]
[19] Lay L https://www.st.com/content/dam/is20/document/PE3-2_Lay_Lv_ST_SIC_Mosfet_Diode_product_and_application_Industrial_summit_Version2_EN.pdf [2025-02-25]
[20] Onsemi https://www.onsemi.cn/company/news-media/press-announcements/en/next-generation-onsemi-1200-v-elitesic-m3s-devices-enhance-efficiency-of-electric-vehicles-and-energy-infrastructure-applications [2025-02-25]
[21] 黄润华, 陶永洪, 柏松, 陈刚, 汪玲, 刘奥, 卫能, 李赟, 赵志飞 2014 固体电子学研究与进展 34 510
Huang R H, Tao Y H, Bai S, Chen G, Wang L, Liu A, Wei N, Li Y, Zhao Z F 2014 Res. Prog. Solid State Electron. 34 510
[22] Yuan J, Wang K, Guo F, Xu S D, Cheng Z J, Chen W, Wu Y Y, Peng R S, Zhu L Y, Li M Z 下一代碳化硅沟槽器件技术--技术文章频道-《化合物半导体》 [2025-02-25]
袁俊, 王宽, 郭飞, 徐少东, 成志杰, 陈伟, 吴阳阳, 彭若诗, 朱厉阳, 李明哲 下一代碳化硅沟槽器件技术--技术文章频道-《化合物半导体》 [2025-02-25]
[23] Yuan J 2021 CN202111363556.3 [2025-01-28] (in Chinese) {袁俊 2021 CN202111363556.3 [2025-01-28]}
[24] Chen W, Guo F, Cheng Z J, Wang K, Wu Y Y, Yuan J 2024 CN202411262429.8 [2024-09-09] (in Chinese) {陈伟, 郭飞, 成志杰, 王宽, 吴阳阳, 袁俊 2024 CN202411262429.8 [2024-09-09]}
[25] Liu Q J, Song G, Luo Y H, He Q M, Wang Y F, Yao Y, Li C Z, Xiao Q, Luo H H 2024 CN202411278696.4 [2024-09-12] (in Chinese) {刘启军, 宋瓘, 罗烨辉, 何启鸣, 王亚飞, 姚尧, 李诚瞻, 肖强, 罗海辉 2024 CN202411278696.4 [2024-09-12]}
[26] Wang Y F, Chen X M, Li C Z, Luo H H 2020 CN202010591568.0 [ (in Chinese) {王亚飞, 陈喜明, 李诚瞻, 罗海辉 2020 CN202010591568.0 [2022-09-09]}
[27] Tanaka S, Rajanna K, Abe T, Esashi M 2001 J. Vac. Sci. Technol. , B 19 2173
Google Scholar
[28] Palmour J W, Edmond J A, Kong H S, Jr C 1993 Proceedings of Silicon carbide and related materials: Fifth international conference on SiC carbide and related materials (ICSCRM’93), Washington, DC, USA, November 1-3, 1993 p499-p502
[29] Tan J, Cooper J A, Melloch M R 1998 IEEE Electron Device Lett. 19 487
Google Scholar
[30] Shen Z, Zhang F, Yan G, Wen Z, Zhao W, Wang L 2020 IEEE Trans. Electron. Devices 67 4046
Google Scholar
[31] Nakamura T, Nakano Y, Aketa M, Nakamura R, Mitani S, Sakairi H 2011 Proceedings of 2011 International Electron Devices Meeting, Washington, DC, USA, December 05-07, 2011 p26.5. 1-p26.5. 3
[32] Harada S, Kobayashi Y, Kinoshita A, Ohse N, Kojima T, Lwaya M 2016 Proceedings of 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), Halkidiki, Greece, September 25-29, 2016 p1
[33] Kim W, Lichtenwalner D J, Ryu S H, Islam N 2022 US 2022/0157959A1
[34] 张跃, 张腾, 黄润华, 柏松 2022 电子元件与材料 41 376
Zhang Y, Zhang T, Huang R, Bo S 2022 Electron. Compon. Mater. 41 376
[35] Saitoh Y, Masuda T, Tamaso H, Notsu H, Michikoshi H, Hiratsuka K 2016 Proceedings of 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), Halkidiki, Greece, September 25–29, 2016 p1
[36] Uchida K, Hiyoshi T, Saito Y, Tsuno T 2020 Mater. Sci. Forum 1004 776
Google Scholar
[37] Rycroft M J 1995 J. Atmos. Terr. Phys. 57 1672
[38] Niskanen K, Touboul A D, Germanicus R C, Michez A, Javanainen A, Wrobel F 2020 IEEE Trans. Nucl. Sci. 67 1365
Google Scholar
[39] Liang X, Zhao J, Zheng Q, Cui J, Yang S, Wang B, Zhang D, Yu X, Guo Q 2021 Radiat. Eff. Defects Solids. 176 1038
Google Scholar
[40] Mcpherson J A, Hitchcock C W, Chow T P, Ji W, Woodworth A A 2021 IEEE Trans. Nucl. Sci. 68 651
Google Scholar
[41] Mizuta E, Kuboyama S, Abe H, Iwata Y, Tamura T 2014 IEEE Trans. Nucl. Sci. 61 1924
Google Scholar
[42] Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J M 2018 IEEE Trans. Nucl. Sci. 65 1951
Google Scholar
[43] Oberg D L, Wert J L 1987 IEEE Trans. Nucl. Sci. 34 1736
Google Scholar
[44] Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O, Alia R G 2020 IEEE Trans. Nucl. Sci. 67 1381
Google Scholar
[45] Lauenstein J, Casey M, Ladbury R, Kim H, Phan A, Topper A 2021 Proceedings of 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, March 21-25,2021 p1-p8
[46] Martinella C, Natzk P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U, Javanainen A 2022 Microelectron. Reliab. 128 114423
Google Scholar
[47] 王敬轩, 吴昊, 王永维, 李永平, 王勇, 杨霏 2016 智能电网 4 1078
Wang J X, Wu H, Wang Y W, Li Y P, Wang Y, Yang F 2016 Smart Grid 4 1078
[48] 刘忠永, 蔡理, 刘小强, 刘保军, 崔焕卿, 杨晓阔 2017 微纳电子技术 54 80
Liu Z Y, Cai L, Liu X Q, Liu B J, Cui H Q, Yang X K 2017 Micronanoelectron. Technol. 54 80
[49] 于庆奎, 曹爽, 张琛睿, 孙毅, 梅博, 王乾元, 王贺, 魏志超, 张洪伟, 张腾, 柏松 2023 原子能科学技术 57 2254
Google Scholar
Yu Q K, Cao S, Zhang S R, Sun Y, Mei B, Wang Q Y, Wang H, Wei Z C, Zhang H W, Zhang T, Bai S 2023 At. Energy Sci. Technol. 57 2254
Google Scholar
[50] Zhao S, Liu Y, Yan X, Hu P, Li X, Chen Q, Zhai P, Zhang T, Jiao Y, Sun Y, Liu J 2025 Microelectron. Reliab. 167 115663
Google Scholar
[51] Zhang H, Guo H X, Lei Z F, Peng C, Zhang Z A, Chen Z W, Sun C H, He Y J, Zhang F Q, Pan X Y, Zhong X L, Ouyang X P 2023 Chin. Phys. B 32 028504
Google Scholar
[52] Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F 2020 IEEE Trans. Nucl. Sci. 67 22
Google Scholar
[53] Peng C, Lei Z, Chen Z, Yue S, Zhang Z, He Y, Huang Y 2021 IET Power Electron. 14 1700
Google Scholar
[54] Wu L, Dong S, Xu X, Wei Y, Liu Z, Li W, Yang J, Li X 2024 IEEE Trans. Nucl. Sci. 71 1978
Google Scholar
[55] Zhou X T, Tang Y, Jia Y P, Hu D Q, Wu Y, Xia T, Gong H, Pang H 2019 IEEE Trans. Nucl. Sci. 66 2312
Google Scholar
[56] Wang L, Jia Y, Zhou X, Zhao Y, Wang L, Li T, Hu D, Wu Y, Deng Z 2022 Microelectron. Reliab. 137 114770
Google Scholar
[57] 彭锦秋 2020 硕士学位论文 (兰州: 兰州大学)
Peng J Q 2020 M. S. Thesis (Lanzhou: Lanzhou University
[58] 彭锦秋, 张行, 吴康, 刘兴宇, 杨旭, 白晓厚, 韦峥, 姚泽恩, 王俊润, 蒋天植, 包超, 卢佳玮, 张宇 2023 原子核物理评论 40 459
Google Scholar
Peng J Q, Zhang X, Wu K, Liu X Y, Yang X, Bai X H, Wei Z, Yao Z E, Wang J R, Jiang T Z, Bao C, Lu J W, Zhang Y 2023 Nucl. Phys. Rev. 40 459
Google Scholar
[59] Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466 [成国栋, 陆江, 翟露青, 白云, 田晓丽, 左欣欣, 杨成樾, 汤益丹, 陈宏, 刘新宇 2022 微电子学 52 466]]
Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466
[60] Martinella C, Race S, Stark R, Alia R G, Javanainen A, Grossner U 2023 IEEE Trans. Nucl. Sci. 70 1844
Google Scholar
[61] Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Lauenstein J M 2021 IEEE Trans. Nucl. Sci. 68 1430
Google Scholar
[62] Martinella C, Race S, Für N, Goncalves de Medeiros H, Zhou H, Grossner U 2024 IEEE Trans. Nucl. Sci. 71 1440
Google Scholar
[63] 李洋帆, 郭红霞, 张鸿, 白如雪, 张凤祁, 马武英, 钟向丽, 李济芳, 卢小杰 2024 物理学报 73 026103
Li Y F, Guo H X, Zhang H, Bai R X, Zhang F Q, Ma W Y, Zhong X L, Li J F, Lu X J 2024 Acta Phys. Sin. 73 026103
[64] Shi J, Wang Y, Fei X, Sun B, Song Y, Liu Y, Zhang W 2024 IEEE Access 13 5023
[65] Yu C, Bao M, Wang Y, Guo H, Han Y, Hu H 2022 IEEE Trans. Device Mater. Reliab. 22 469
Google Scholar
[66] Wang Y, Zhou J, Lin M, Li X, Yang J, Cao F 2022 IEEE Trans. Electron Devices 10 373
[67] Hohl J H, Johnnson G H 1989 IEEE Trans. Nucl. Sci. 36 2260
Google Scholar
[68] Kuboyama S, Matsuda S, Kanno T, Ishii T 1993 IEEE Trans. Nucl. Sci. 39 1698
[69] Titus J L 2013 IEEE Trans. Nucl. Sci. 60 1912
Google Scholar
[70] Zhang X 2006 Ph. D. Dissertation (MD, USA: University of Maryland, College Park
[71] Griffoni A, Duivenbode J v, Linten D, Simoen E, Rech P, Dilillo L 2011 Proceedings of 2011 12th European Conference on Radiation and Its Effects on Components and Systems, Sevilla, Spain, September 19-23, 2011 pp226–231
[72] Ikpe S A, Lauenstein J M, Carr G A, Hunter D, Ludwing L L, Wood W 2016 Proceedings of 2016 IEEE International Reliability Physics Symposium (IRPS), Pasadena, CA, USA, April 17-21,2016 p1
[73] Johnson R A, Witulski A F, Ball D R, Galloway K F, Sternberg A L 2019 IEEE Trans. Nucl. Sci. 66 1694
Google Scholar
[74] Shoji T, Nishida S, Hamada K, Tadano H 2015 Microelectron. Reliab. 55 1517
Google Scholar
[75] Wang H, Gu J, Huang X, Zhang J, Jing Y 2024 Microelectron. Reliab. 154 115344
Google Scholar
[76] McPherson J A, Hitchcock C W, Chow T P, Ji W 2020 Mater. Sci. Forum. 1004 889
Google Scholar
[77] Zhang Z, Yuan H, Liu K, Zhang Y, Liu Y, Han C 2024 IEEE Electron Device Lett. 45 2495
Google Scholar
[78] Zhang N, Tang X, Song Q, Liu K, Zhang Z, Yuan H 2023 Proceedings of 2023 5th International Conference on Radiation Effects of Electronic Devices (ICREED), Kunming, China, May 24–27, 2023 pp1–3
[79] Waskiewicz A E, Groninger J W, Strahan V H, Long D M 1986 IEEE Trans. Nucl. Sci. 33 1710
Google Scholar
[80] Lauenstein J M, Casey M, Topper A, Wilcox E, Phan A, Ikpe S, LaBel K 2015 Proceedings of 2015 IEEE Nuclear and Space Radiation Effects Conference (NSREC), Boston, Massachusetts, July 16,2015 p1
[81] Liu S, Titus J L, Boden M 2007 IEEE Trans. Nucl. Sci. 54 2554
Google Scholar
[82] Zhou X, Jia Y, Hu D, Wu Y 2019 IEEE Trans. Electron Devices 66 2551
Google Scholar
[83] Wang Y, Lin M, Li X, Wu X, Yang J, Bao M 2019 IEEE Trans. Electron Devices 66 4264
Google Scholar
[84] Jiang L, Liu J, Tian X, Chen H, Tang Y, Bai Y 2020 IEEE Trans. Electron Devices 67 3698
Google Scholar
[85] 林茂 2020 硕士学位论文 (杭州: 杭州电子科技大学)
Lin M 2020 M. S. Thesis (Hangzhou: Hangzhou Dianzi University
[86] Liao Q, Liu H 2024 Micromachines 15 642
Google Scholar
[87] Huang S, Amaratunga A J, Udrea F 2000 IEEE Trans. Nucl. Sci. 47 2640
Google Scholar
[88] Zerarka M, Austin P, Morancho F, Isoird K, Arbess H, Tasselli J 2014 IET Circuits Devices Syst. 8 197
Google Scholar
[89] Lu J, Liu H, Cai X, Luo J, Li B, Li B, Wang L, Han Z 2018 J. Semicond. 39 034003
Google Scholar
[90] Yu C, Wang Y, Cao F, Huang L, Wang Y 2015 IEEE Trans. Electron Devices 62 143
Google Scholar
[91] 杨余 2023 硕士学位论文 (湖南: 湖南大学)
Yang Y 2023 M. S. Thesis (Hunan: Hunan University
[92] Wang Y, Liu T, Qian L, Wu H, Yu Y, Tao J, Cheng Z, Hu S 2023 Micromachines 14 688
Google Scholar
[93] Sun S, Chen F, Sun Y, Li Y, Yang K, Tang X 2024 Microelectron. Reliab. 164 115569
[94] Ranjan S, Majumder S, Naugarhiya A 2020 Proceedings of 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, February 28-29, 2020 pp272–275
[95] Amjath M, Ranjan S, Naugarhiya A 2022 Proceedings of 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhiai, India, April 21–22,2022 pp1–5
[96] Hohl J, Johnnson G 1989 IEEE Trans. Nucl. Sci. 36 2260
Google Scholar
[97] Darwish M, Yue C, Lui K H, Giles F, Chan B, Chen K I, Pattanayak D, Chen Q, Terrill K, Owyang K 2003 Proceedings of the ISPSD ‘03, 2003 IEEE 15th International Symposium on Power Semiconductor Devices and ICs, Cambridge, UK, April 14–17 2003 pp24–27
[98] Lu J, Liu H, Luo J, Wang L, Li B, Li B, Zhang G, Han Z 2016 Proceedings of 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Bremen, Germany, September 19–23, 2016 pp1–5
[99] Liu Y, Wang Y, Yu C H, Luo X, Cao F 2018 Superlattices Microstruct. 122 165
Google Scholar
[100] Liang S, Yang Y, Chen J, Shu L, Wang L, Wang J 2024 IEEE Trans. Device Mater. Reliab. 24 507
Google Scholar
[101] Shen P, Wang Y, Li X J, Yang J, Zheng L 2023 Microelectron. Reliab. 142 114931
Google Scholar
[102] Kim J, Kim K 2022 IEEE Trans. Device Mater. Reliab. 22 164
Google Scholar
[103] Yu Q, Chen W, Huang J, Shen Z, Lin Z, Peng H, Shu H, Li J 2025 Micro Nanostruct. 198 208064
Google Scholar
计量
- 文章访问数: 223
- PDF下载量: 19
- 被引次数: 0