搜索

x
中国物理学会期刊

结合盲信号分离算法的局部放电TDOA/DOA混合定位方法

CSTR: 32037.14.aps.74.20250317

TDOA/DOA hybrid location method of partial discharge combined with blind signal separation algorithm

CSTR: 32037.14.aps.74.20250317
PDF
HTML
导出引用
  • 针对电力设备局部放电(PD)超声波检测中存在的时间-空域特征解耦、硬件成本高及计算量大的技术瓶颈, 提出基于核主成分分析(KPCA)伪白化的改进型非圆FastICA (mnc-FastICA)提取TDOA/DOA参数的混合定位方法. 该方法通过时间-空域特征联合提取与智能优化机制, 实现了小规模传感器阵列下的高精度定位. 本文首先构建KPCA伪白化预处理框架, 利用多项式核函数映射信号非线性升维再降维, 在保留TDOA与DOA特征关联性的同时抑制环境噪声; 其次通过mnc-FastICA算法盲分离超声信号后, 联合广义互相关法GCC与阵列流型解析技术同步提取TDOA/DOA参数; 最后建立融合双参数的最大似然估计模型, 并引入非洲秃鹫优化算法实现全局最优解快速收敛. 实验表明, 在仅配置2个正交阵列(共8个传感器)的小规模硬件架构下, 本方法TDOA估计误差降至2.34%, DOA估计精度优于2°, 定位误差达1.54 cm. 该方法有效解决了PD检测中时间-空域特征联合、硬件成本与定位精度的矛盾, 为电力设备状态监测提供新方案 .

     

    To address the technical bottleneck of decoupling spatiotemporal feature, high hardware costs, and high computational complexity in ultrasonic detection of partial discharge (PD) in electrical equipment, this paper proposes a TDOA/DOA hybrid localization method based on kernel principal component analysis (KPCA) and modified noncircular FastICA (mnc-FastICA). By integrating spatiotemporal feature extraction with intelligent optimization mechanisms, this method achieves high-precision localization by using a small-scale sensor array. The key innovations are as follows. First, a KPCA-assisted pseudo-whitening preprocessing framework is constructed by using polynomial kernel mapping for nonlinear signal dimensionality reduction, which preserves the correlation between time delay (TDOA) and direction-of-arrival (DOA) features while suppressing environmental noise. Second, after the blind separation of ultrasonic signals via the mnc-FastICA algorithm, TDOA/DOA parameters are synchronously extracted through a combination of the generalized cross-correlation (GCC) method and array manifold analysis. Finally, a maximum likelihood estimation model integrating dual parameters is established, and the African vulture optimization algorithm (AVOA) is introduced to accelerate global optimal solution convergence. Experimental results demonstrate that with a compact hardware configuration of two orthogonal arrays (8 sensors in total), the proposed method achieves a TDOA estimation error of 2.34%, DOA estimation accuracy better than 2°, and localization errors as low as 1.54 cm. This approach effectively resolves the discrepancies among spatiotemporal feature coupling, hardware cost, and localization accuracy in PD detection, providing a novel solution for condition monitoring of electrical equipment.

     

    目录

    /

    返回文章
    返回