搜索

x
中国物理学会期刊

常压下双层结构镍氧化物薄膜高温超导电性的发现与研究展望

CSTR: 32037.14.aps.74.20250331

Ambient-pressure Ruddlesden-Popper bilayer nickelate superconductors: From discovery to prospects

CSTR: 32037.14.aps.74.20250331
PDF
HTML
导出引用
  • 近年来, 镍氧化物超导电性备受关注, 全球多个科研团队在常压和高压条件下, 发现了多种镍氧化物材料的超导电性. 来自中国和美国的研究团队通过独立、相异的研究路径, 发现了常压下双层Ruddlesden-Popper结构镍氧化物薄膜的高温超导电性, 为深入研究高温超导机理提供了全新的平台. 中国团队基于自主发展的“强氧化原子逐层外延”技术, 制备出具有原子级平滑表面的纯相双层结构镍氧化物超导薄膜. 通过原位强氧化处理技术, 可在原子级平整的薄膜表面开展ARPES等表面敏感测量, 揭示超导相的电子结构特征, 为超导微观机理的深入研究提供关键实验基础. 通过协同开展晶格结构设计、稀土/碱土元素替代以及界面应力工程调控, 有望进一步提升该体系的超导转变温度.

     

    In recent years, significant progress has been made in the superconductivity of nickelates, with global teams discovering various nickelate superconductors under ambient and high pressure conditions. Research teams in China and USA have independently discovered ambient-pressure superconductivity in Ruddlesden-Popper bilayer nickelate thin films through different technical pathways, establishing a novel platform for probing high-temperature superconducting mechanisms. The Chinese teams have synthesized pure-phase bilayer nickelate films with atomically smooth surfaces by using their proprietary Gigantic-Oxidative Atomic-Layer-by-Layer Epitaxy (GOALL-Epitaxy) technique. After in situ strong oxidation processing of surface, surface-sensitive measurements, such as ARPES, can be conducted on these atomically flat films to reveal the electronic structure of the superconducting phase, and further in-depth experimental research on superconducting mechanisms is expected. Through synergistic efforts in lattice engineering, rare-earth/alkaline-earth element substitution, and interface strain engineering, this system has the potential to achieve higher superconducting transition temperatures.

     

    目录

    /

    返回文章
    返回