搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SCAPS-1D的钙钛矿太阳能电池性能的数值模拟与性能优化比较理论分析

李诗文 周豹 赵啟融 杨小波 谢再新 段卓琦 赵恩铭 胡永茂

引用本文:
Citation:

基于SCAPS-1D的钙钛矿太阳能电池性能的数值模拟与性能优化比较理论分析

李诗文, 周豹, 赵啟融, 杨小波, 谢再新, 段卓琦, 赵恩铭, 胡永茂
cstr: 32037.14.aps.74.20250335

Numerical simulation and comparative theoretical analysis of performance optimization for perovskite solar cells based on SCAPS-1D

LI Shiwen, ZHOU Bao, ZHAO Qirong, YANG Xiaobo, XIE Zaixin, DUAN Zhuoqi, ZHAO Enming, HU Yongmao
cstr: 32037.14.aps.74.20250335
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 数值模拟方法为钙钛矿太阳能电池的器件优化提供了高效的研究手段. 本研究利用SCAPS-1D软件, 采用数值模拟方法, 基于FTO/SnO2/钙钛矿层/Cu2O/Au型太阳能电池, 采用7种不同无铅和含铅的材料作为钙钛矿层, 进行器件模拟研究并优化钙钛矿层厚度、界面缺陷态密度、载流子密度对太阳能电池性能的影响. 经过对比分析得出, 在7种钙钛矿太阳能电池器件中, Cs2PtI6钙钛矿太阳能电池的功率转换效率最高, 达到27.95%. 这为设计高效、稳定的太阳能电池提供了参考.
    Perovskite solar cells have become a research hotspot in the photovoltaic field due to their excellent photoelectric performance and low-cost preparation processes. However, the environmental toxicity of traditional lead-containing perovskite materials and the optimization of device performance encounter key problems that limit their commercial applications. Numerical simulation methods provide an efficient and cost-effective approach for optimizing perovskite solar cell devices, allowing for rapid material screening and structural parameter optimization, thereby reducing experimental trial-and-error costs. Based on SCAPS-1D, this work systematically investigates the performance of solar cells with the structure FTO/SnO2/perovskite layer/Cu2O/Au by using numerical simulation. Seven different lead-free and lead-containing perovskite materials are selected as the light-absorbing layer. By the comparative analysis of their photoelectric characteristics, this work explores the influences of perovskite layer thickness, electron transport layer thickness, hole transport layer thickness, interface defect state density, and carrier concentration on device performance. Furthermore, temperature testing and J-V and QE curve analyses are conducted on the optimized perovskite solar cells. The results indicate that excessive thickness of the perovskite layer increases carrier recombination rate, thereby reducing cell efficiency. The optimized Cs2PtI6-based perovskite solar cell exhibits the best performance, with a power conversion efficiency of 27.95%, which is much higher than those of other lead-free and some lead-containing perovskite devices. Under extreme temperature conditions of 600 K, the PCE of Cs2PtI6 remains around 50% of its value at room temperature (300 K). This study reveals the influences of different perovskite materials and device parameters on photovoltaic performance through systematic numerical simulation analysis, providing a theoretical basis for designing efficient and stable perovskite solar cells.
      通信作者: 周豹, bzhou3@163.com
    • 基金项目: 国家自然科学基金(批准号: 12364025, 62065001)和云南省中青年学术和技术带头人后备人才项目(批准号: 202205AC160001)资助的课题.
      Corresponding author: ZHOU Bao, bzhou3@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12364025, 62065001) and the Yunnan Provincial Reserve Talents Project for Young and Middle-Aged Academic and Technical Leaders, China (Grant No. 202205AC160001).
    [1]

    Prasanna J L, Kumar A, Ravi Kumar M, Gayathri K, Santhosh C, Kumer S, Mohan E, Udayakumar S 2024 Int. J. Energy Res. 2024 3942154Google Scholar

    [2]

    张娜, 米倩玉, 邓嘉纬, 赵晓军 2024 中国软科学 2 1Google Scholar

    Zhang N, Mi Q Y, Deng J J, Zhao X J 2024 China Soft Science. 2 1Google Scholar

    [3]

    Soni A, Bhamu K, Sahariya J 2020 J. Alloys Compd. 817 152758Google Scholar

    [4]

    Maho A, Lobet M, Daem N, Piron P, Spronck G, Loicq J, Cloots R, Colson P, Henrist C, Dewalque J 2021 ACS Appl. Energy Mater. 4 1108Google Scholar

    [5]

    Wang Y D, Duan J L, Yang X Y, Liu L Q, Zhao L L, Tang Q W 2020 Nano Energy 69 104418Google Scholar

    [6]

    Brenner T M, Egger D A, Kronik L, Hodes G, Cahen D 2016 Nat. Rev. Mater. 1 15007Google Scholar

    [7]

    Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J, Stranks S, Snaith H, Nicholas R 2015 Nat. Phys. 11 582Google Scholar

    [8]

    Song Z N, McElvany C, Phillips A, Celik I, Krantz P, Watthage S, Liyanage G, Apul D, Heben M 2017 Energy Environ. Sci. 10 1297Google Scholar

    [9]

    Kim Y, Cho H, Heo J, Kim T, Myoung N, Lee C, Im S, Lee T 2015 Adv. Mater. 27 1248Google Scholar

    [10]

    Dou L T, Yang Y, You J B, Hong Z R, Chang W H, Li G, Yang Y 2014 Nat. Commun. 5 5404Google Scholar

    [11]

    Kojima A, Teshima K, Shira Y, Miyasaka T 2009 J. Am. Chem. So. 131 6050Google Scholar

    [12]

    Bhavsar K, Lapsiwala P 2021 Semicond. Phys. Quantum Electron. Optoelectron 24 341Google Scholar

    [13]

    Hossain M, Toki G, Alam I, Pandey R, Samajdar D, Rahman M, Islam M, Bencherif M, Madan J, Mohammed M 2023 New J. Chem. 47 4801Google Scholar

    [14]

    Gatti T, Menna E, Meneghetti M, Maggini M, Petrozza A, Lamberti F 2017 Nano Energy 41 84Google Scholar

    [15]

    Mustafa G M, Younas B, Saba S, Elqahtani Z B, Alwadaid N, Aftab S 2024 RSC advances 14 18957Google Scholar

    [16]

    Uddin M, Mashud M, Toki G, Pandey R, Zulfiqar M, Saidani O, Chandran K, Ouladsmane M, Hossain M 2024 J. Opt. 53 3726Google Scholar

    [17]

    Burgelman M, Nollet P, Degrave S 2000 Thin Solid Films 361–362 527Google Scholar

    [18]

    Singh A, Srivastava S, Mahapatra A, Baral J, Pradhan B 2021 Opt. Mater. 117 111193Google Scholar

    [19]

    Hao L S, Li T, Ma X X, Wu J, Qiao L X, Wu X F, Hou G Y, Pei H N, Wang X B, Zhang X Y 2021 Opt. Quant. Electron. 53 524Google Scholar

    [20]

    Rai S, Pandey B, Dwivedi D 2020 Opt. Mater. 100 109631Google Scholar

    [21]

    Hossain M, Arnab A, Das R, Hossain K, Rubel M, Rahman M, Bencherif H, Emetere M, Mohammed M, Pandey R 2022 RSC Adv. 12 35002Google Scholar

    [22]

    Amjad A, Qamar S, Zhao C C, Fatima K, Sultan M, Akhter Z 2023 RSC Adv. 13 23211Google Scholar

    [23]

    Ahmad W, Noman M, Jan S, Khan A 2023 Royal Soc. Open Sci. 10 221127Google Scholar

    [24]

    Schulte L, White W, Renna L, Ardo S 2021 Joule 5 2380Google Scholar

    [25]

    ASiddique A, Helal S, Haque M 2024 J. Ovonic Res. 20 187Google Scholar

    [26]

    Subudhi P, Punetha D 2023 Sci. Rep. 13 19485Google Scholar

    [27]

    Jayan K D, Sebastian V, Kurian J 2021 Solar Energy 221 99Google Scholar

    [28]

    Mohandes A, Moradi M, Nadgaran H 2021 Opt. Quant. Electron. 53 319Google Scholar

    [29]

    Salah M, Abouelatta M, Shaker A, Hassan K, Saeed A 2019 Semicond. Sci. Tech. 34 115009Google Scholar

  • 图 1  用于仿真的太阳能电池模型

    Fig. 1.  Solar cell model used for simulation.

    图 2  钙钛矿层厚度对FTO/SnO2/钙钛矿层/Cu2O/Au性能参数的影响 (a) Voc; (b) Jsc; (c) FF; (d) PCE

    Fig. 2.  Effect of perovskite layer thickness on the performance parameters of FTO/SnO2/Perovskite Layer/Cu2O/Au: (a) Voc; (b) Jsc; (c) FF; (d) PCE.

    图 3  L1/L2缺陷态密度对FTO/SnO2/钙钛矿层/Cu2O/Au性能参数的影响 (a) Voc; (b) Jsc; (c) FF; (d) PCE

    Fig. 3.  Influence of L1/L2 defect state density on the performance parameters of FTO/SnO2/Perovskite Layer/Cu2O/Au: (a) Voc; (b) Jsc; (c) FF; (d) PCE.

    图 4  ND对FTO/SnO2/钙钛矿层/Cu2O/Au的性能参数的影响 (a) Voc; (b) Jsc; (c) FF; (d) PCE

    Fig. 4.  Effect of ND on the performance parameters of FTO/SnO2/Perovskite Layer/Cu2O/Au: (a) Voc; (b) Jsc; (c) FF; (d) PCE.

    图 5  NA对FTO/SnO2/钙钛矿层/Cu2O/Au性能参数的影响 (a) Voc; (b) Jsc; (c) FF; (d) PCE

    Fig. 5.  Effect of NA on the performance parameters of FTO/SnO2/Perovskite Layer/Cu2O/Au: (a) Voc; (b) Jsc; (c) FF; (d) PCE.

    图 6  (a)温度对FF的影响; (b) 温度对PCE的影响

    Fig. 6.  (a) Effect of temperature on FF; (b) effect of temperature on PCE.

    图 7  不同钙钛矿材料优化后的太阳能电池的J-V特性

    Fig. 7.  J-V characteristics of solar cells optimized with different perovskite materials.

    图 8  不同钙钛矿材料优化后的QE曲线

    Fig. 8.  QE curves of solar cells optimized with different perovskite materials.

    表 1  模拟研究中使用的PSCs物理参数

    Table 1.  Physical parameters of PSCs used in simulation studies.

    Parameter SnO2 Cu2O Cs2BiAgI6 CsPbI3 Cs2PtI6 CsGeI3 PeDA2MA5Pb6I19 MASnI3 FAMAPbI3
    Layer thickness/nm 100 100 100 100 100 100 100 100 100
    Bandgap/eV 3.3 2.17 1.6 1.694 1.37 1.6 1.6 1.35 1.53
    Electron affinity/eV 4 3.2 3.9 3.95 4.3 3.52 3.98 4.17 4
    Relative permittivity 9 6.6 6.5 6 4.8 18 25 6.5 9
    Effective conduction band
    density/(1017 cm–3)
    2.2 2500 100 1100 0.003 10 7.5 10 100
    Effective valence band
    density /(1017 cm–3)
    2.2 2500 100 800 1 100 18 100 50
    Electron mobility/(cm2·V–1·s–1) 20 80 2 25 62.6 20 1.4 1.6 5
    Hole mobility/(cm2·V–1·s–1) 10 80 2 25 62.6 20 0.3 1.6 3
    Donor concentration/(1017 cm–3) 10 0 0 0.01 0.00001 1 0 0 0.2
    Acceptor concentration/(1017 cm–3) 0 30 10 0 0.01 1 0 10 0.2
    Density of defect state/(1014 cm–3) 1 10 1 1 1000 1 2.5 1 0.1
    Refs. [1] [15] [21] [13] [22] [23] [24] [25] [26]
    下载: 导出CSV

    表 2  优化前后的电池性能对比

    Table 2.  Comparison of solar cell performance before and after optimization.

    钙钛矿层材料优化前优化后
    FF/%PCE/%FF/%PCE/%
    Cs2BiAgI680.7211.5486.7323.90
    CsPbI387.7310.2483.5817.91
    Cs2PtI678.0016.9280.5327.95
    CsGeI365.3713.6686.9025.73
    PeDA2MA5Pb6I1921.9913.5872.0023.52
    MASnI359.2220.6674.9926.90
    FAMAPbI379.0014.8080.8927.82
    下载: 导出CSV
  • [1]

    Prasanna J L, Kumar A, Ravi Kumar M, Gayathri K, Santhosh C, Kumer S, Mohan E, Udayakumar S 2024 Int. J. Energy Res. 2024 3942154Google Scholar

    [2]

    张娜, 米倩玉, 邓嘉纬, 赵晓军 2024 中国软科学 2 1Google Scholar

    Zhang N, Mi Q Y, Deng J J, Zhao X J 2024 China Soft Science. 2 1Google Scholar

    [3]

    Soni A, Bhamu K, Sahariya J 2020 J. Alloys Compd. 817 152758Google Scholar

    [4]

    Maho A, Lobet M, Daem N, Piron P, Spronck G, Loicq J, Cloots R, Colson P, Henrist C, Dewalque J 2021 ACS Appl. Energy Mater. 4 1108Google Scholar

    [5]

    Wang Y D, Duan J L, Yang X Y, Liu L Q, Zhao L L, Tang Q W 2020 Nano Energy 69 104418Google Scholar

    [6]

    Brenner T M, Egger D A, Kronik L, Hodes G, Cahen D 2016 Nat. Rev. Mater. 1 15007Google Scholar

    [7]

    Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J, Stranks S, Snaith H, Nicholas R 2015 Nat. Phys. 11 582Google Scholar

    [8]

    Song Z N, McElvany C, Phillips A, Celik I, Krantz P, Watthage S, Liyanage G, Apul D, Heben M 2017 Energy Environ. Sci. 10 1297Google Scholar

    [9]

    Kim Y, Cho H, Heo J, Kim T, Myoung N, Lee C, Im S, Lee T 2015 Adv. Mater. 27 1248Google Scholar

    [10]

    Dou L T, Yang Y, You J B, Hong Z R, Chang W H, Li G, Yang Y 2014 Nat. Commun. 5 5404Google Scholar

    [11]

    Kojima A, Teshima K, Shira Y, Miyasaka T 2009 J. Am. Chem. So. 131 6050Google Scholar

    [12]

    Bhavsar K, Lapsiwala P 2021 Semicond. Phys. Quantum Electron. Optoelectron 24 341Google Scholar

    [13]

    Hossain M, Toki G, Alam I, Pandey R, Samajdar D, Rahman M, Islam M, Bencherif M, Madan J, Mohammed M 2023 New J. Chem. 47 4801Google Scholar

    [14]

    Gatti T, Menna E, Meneghetti M, Maggini M, Petrozza A, Lamberti F 2017 Nano Energy 41 84Google Scholar

    [15]

    Mustafa G M, Younas B, Saba S, Elqahtani Z B, Alwadaid N, Aftab S 2024 RSC advances 14 18957Google Scholar

    [16]

    Uddin M, Mashud M, Toki G, Pandey R, Zulfiqar M, Saidani O, Chandran K, Ouladsmane M, Hossain M 2024 J. Opt. 53 3726Google Scholar

    [17]

    Burgelman M, Nollet P, Degrave S 2000 Thin Solid Films 361–362 527Google Scholar

    [18]

    Singh A, Srivastava S, Mahapatra A, Baral J, Pradhan B 2021 Opt. Mater. 117 111193Google Scholar

    [19]

    Hao L S, Li T, Ma X X, Wu J, Qiao L X, Wu X F, Hou G Y, Pei H N, Wang X B, Zhang X Y 2021 Opt. Quant. Electron. 53 524Google Scholar

    [20]

    Rai S, Pandey B, Dwivedi D 2020 Opt. Mater. 100 109631Google Scholar

    [21]

    Hossain M, Arnab A, Das R, Hossain K, Rubel M, Rahman M, Bencherif H, Emetere M, Mohammed M, Pandey R 2022 RSC Adv. 12 35002Google Scholar

    [22]

    Amjad A, Qamar S, Zhao C C, Fatima K, Sultan M, Akhter Z 2023 RSC Adv. 13 23211Google Scholar

    [23]

    Ahmad W, Noman M, Jan S, Khan A 2023 Royal Soc. Open Sci. 10 221127Google Scholar

    [24]

    Schulte L, White W, Renna L, Ardo S 2021 Joule 5 2380Google Scholar

    [25]

    ASiddique A, Helal S, Haque M 2024 J. Ovonic Res. 20 187Google Scholar

    [26]

    Subudhi P, Punetha D 2023 Sci. Rep. 13 19485Google Scholar

    [27]

    Jayan K D, Sebastian V, Kurian J 2021 Solar Energy 221 99Google Scholar

    [28]

    Mohandes A, Moradi M, Nadgaran H 2021 Opt. Quant. Electron. 53 319Google Scholar

    [29]

    Salah M, Abouelatta M, Shaker A, Hassan K, Saeed A 2019 Semicond. Sci. Tech. 34 115009Google Scholar

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] 张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉. 基于双修饰策略制备高性能反式钙钛矿太阳能电池. 物理学报, 2024, 73(24): 248401. doi: 10.7498/aps.73.20241238
    [3] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [4] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [5] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [6] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [7] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [9] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [11] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [12] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [13] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [14] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [15] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏. 平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性. 物理学报, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [16] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [18] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [19] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
计量
  • 文章访问数:  406
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-13
  • 修回日期:  2025-04-30
  • 上网日期:  2025-05-10

/

返回文章
返回