搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光辐照含铜软木制备LIG/CuO复合材料及场发射性能

马立安 黄旭 陈松 魏朝晖 孙磊 叶晓云

引用本文:
Citation:

激光辐照含铜软木制备LIG/CuO复合材料及场发射性能

马立安, 黄旭, 陈松, 魏朝晖, 孙磊, 叶晓云

Preparation and field emission properties of LIG/CuO composites from laser irradiated copper-containing cork

MA Li'an, HUANG Xu, CHEN Song, WEI Zhaohui, SUN Lei, YE Xiaoyun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 三维(3D)石墨烯材料具有优异的电子发射性能与机械稳定性, 在高电流密度场发射器件领域展现出显著优势. 本文通过飞秒激光一步法原位制备氧化铜修饰三维石墨烯复合材料(LIG/CuO), 实现了软木碳化与铜氧化的同步调控. 利用铜盐浸润与抗坏血酸还原构建浅层富铜前驱体, 经激光辐照同步诱导纤维素碳化为少层石墨烯和Cu向CuO转变, 形成CuO纳米颗粒(30—80 nm)包覆的微晶石墨烯三维纤维网络. 该结构展现出卓越场发射性能, 制备的纯LIG阈值电场值为~2.12 V/μm, 场增强因子~8223; 优化的CuO 负载量后, LIG/CuO-5阈值电场值减至1.57 V/μm, 场增强因子达~8823, 并在2.89 V/μm下实现了22.71 mA/cm²超高电流密度的电子发射. 密度泛函理论(DFT)计算揭示异质结界面电子从CuO向石墨烯转移, 使石墨烯功函数从4.833 eV降至4.677 eV, 同时CuO表面能带弯曲协同降低隧穿势垒. 此外, CuO纳米颗粒的局域电场增强效应与优化分布密度协同使有效发射点密度提升.
    Three-dimensional (3D) graphene materials have excellent electronic emission performance and mechanical stability, showing significant advantages in the field of high current density field emitters. In this study, copper oxide modified three-dimensional graphene composites (LIG/CuO) are prepared in situ by a femtosecond laser one-step method, which realizes the simultaneous regulation of cork carbonization and copper oxidation. Shallow copper-rich precursors are constructed by copper salt infiltration and ascorbic acid reduction. Laser irradiation is used to synchronously induce the carbonization of cellulose into few-layer graphene and the transformation of Cu into CuO, forming a three-dimensional fiber network of microcrystalline graphene coated with CuO nanoparticles (30—80 nm). The structure exhibits excellent field emission performance: the threshold field of preparing pure laser- induced graphene (LIG) is ~2.12 V/μm and the field enhancement factor is ~8223. After optimizing CuO loading, the threshold field of LIG/CuO-5 is reduced to 1.57 V/μm, the field enhancement factor rises up to ~8823, and the ultra-high current density of 22.71 mA/cm2 is achieved at 2.89 V/μm. The density functional theory (DFT) calculations show that the electrons at the heterojunction interface transfer from CuO to graphene, which reduces the work function of graphene from 4.833 eV to 4.677 eV, and the band bending of CuO surface synergistically reduces the tunneling barrier. In addition, the local electric field enhancement effect of CuO nanoparticles and the optimized distribution density synergistically increase the effective emission point density. The performance improvement is mainly attributed to three synergistic effects: (Ⅰ) the three-dimensional porous graphene network provides abundant tip emission sites; (Ⅱ) the introduction of CuO nanoparticles reduces the work function of the composite material from 4.833 eV to 4.667 eV, effectively reducing the electron escape barrier; (Ⅲ) the heterojunction interface forms a directional electron migration channel under a positive bias electric field, combined with the excellent conductivity of LIG, which significantly improves the electron tunneling efficiency.
  • 图 1  激光辐照制备LIG/CuO示意图

    Fig. 1.  Flow diagram of LIG/CuO preparation by laser irradiation.

    图 2  不同样品的场发射电镜照片 (a1) LIG(截面图); (a2) LIG/CuO-5(截面图); (b1), (b2) LIG; (c1), (c2) LIG/CuAc-5; (d1), (d2) LIG/CuO-2.5; (e1), (e2) LIG/CuO-5; (f1), (f2) LIG/CuO-10; (g) LIG/CuO-5的元素分布图

    Fig. 2.  Field emission electron microscopy images of different samples: (a1) LIG (cross section); (a2) LIG/CuO-5 (cross section); (b1), (b2) LIG; (c1), (c2) LIG/CuAc-5; (d1), (d2) LIG/CuO-2.5; (e1), (e2) LIG/CuO-5; (f1), (f2) LIG/CuO-10; (g) mapping images of LIG/CuO-5.

    图 3  样品的TEM照片 (a) LIG; (b), (c) LIG/CuO-5

    Fig. 3.  TEM images of samples: (a) LIG; (b), (c) LIG/CuO-5.

    图 4  样品LIG和LIG/CuO-5的(a) Raman谱图和(b) FTIR谱图

    Fig. 4.  Raman spectra (a) and FTIR spectra (b) of LIG and LIG/CuO-5.

    图 5  (a) LIG/CuO-5的XPS图谱全谱; (b) C 1s, (c) O 1s, (d) Cu 2p的高分辨XPS光谱

    Fig. 5.  (a) Survey XPS spectrum of the LIG/CuO-5; high-resolution XPS spectra of C 1s (b), O 1s (c) and Cu 2p (d).

    图 6  (a) 构建的LIG, CuO和LIG/CuO 3D模型和计算得到的功函数; (b) LIG, CuO和 LIG/CuO 的分波态密度(PDOS)图(灰色虚线为费米能级)

    Fig. 6.  (a) LIG, CuO and LIG/CuO 3D models and the calculated work functions; (b) the partial density of states (PDOS) of LIG, CuO and LIG/CuO (the gray dotted line is the Fermi level).

    图 7  (a)样品LIG, LIG/CuAc-5, LIG/CuO-2.5, LIG/CuO-5和LIG/CuO-10的J-E曲线; (b)相应的F-N曲线; (c)样品相对应的开启阈值(Eth)和场增减因子(β)关系曲线; (d)样品LIG和LIG/CuO-5场发射稳定性曲线

    Fig. 7.  (a) J-E plots of LIG, LIG/CuAc-5, LIG/CuO-2.5, LIG/CuO-5 and LIG/CuO-10; (b) F-N plots; (c) relationship plots of Eth and β versus the samples; (d) stability plots of LIG and LIG/CuO-5.

    图 8  LIG/CuO能带结构 (a) 非接触; (b) 接触; (c) 电场作用

    Fig. 8.  LIG/CuO band structure: (a) Non-contact; (b) contact; (c) electric field.

  • [1]

    Zhang H, Tang J, Yuan J S, Yamauchi Y, Suzuki T T, Shinya N, Nakajima K, Qin L C 2016 Nat. Nanotechnol. 11 273Google Scholar

    [2]

    Deka N, Subramanian V 2020 IEEE Trans. Electron Devices 67 3753Google Scholar

    [3]

    Xing Y, Zhang Y, Xu N S, Huang H J, Ke Y L, Li B H, Chen J, She J C, Deng S Z 2018 IEEE Trans. Electron Devices 65 1146Google Scholar

    [4]

    Cao G, Lee Y Z, Peng R, Liu Z, Rajaram R, Calderon-Colon X, An L, Wang P, Phan T, Sultana S, Lalush D S, Lu J P, Zhou O 2009 Phys. Med. Biol. 54 2323Google Scholar

    [5]

    Heer W, Châtelain A, Ugarte D 1995 Science 270 1179Google Scholar

    [6]

    郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋 2024 物理学报 73 086101Google Scholar

    Zheng Q R, Zhan B Z, Zhe J Y, Wang J Y, Shi R L, Meng G D 2024 Acta Phys. Sin. 73 086101Google Scholar

    [7]

    Bhopale S R, Jagtap K K, Phatangare A, Kamble S, Dhole S D, Mathe VL, More M A 2023 Appl. Surf. Sci. 619 156752Google Scholar

    [8]

    Guo X, Li Y L, Ding Y Q, Chen Q, Li J S 2019 Mater. Des. 162 293Google Scholar

    [9]

    Deng J H, Liu R N, Zhang Y, Zhu W X, Han A L, Cheng G A 2017 J. Alloys Compd. 723 75Google Scholar

    [10]

    Huang Y X, Zhao H, Li Z L, Hu L L, Wu Y L, Sun F, Meng S, Zhao J M 2023 Adv. Mater. 35 2208362Google Scholar

    [11]

    黄逸轩, 赵继民 2024 光散射学报 36 52Google Scholar

    Huang Y X, Zhao J M 2024 J. Light Scat. 36 52Google Scholar

    [12]

    Hasaien J, Wu Y L, Shi M Z, Zhai Y N, Wu Q, Liu Z, Zhou Y, Chen X. H, Zhao J M 2025 PNAS 122 e2406464122Google Scholar

    [13]

    Jiang L T, Jiang C Y, Tian Y C, Zhao H, Zhang J, Tian Z Y, Fu S H, Liang E J, Wang X C, Jin C Q, Zhao J M 2024 Chin. Phys. Lett. 41 047802Google Scholar

    [14]

    Wu L M, Dong Y Z, Zhao J L, Ma D T, Huang W C, Zhang Y, Wang Y Z, Jiang X T, Xiang Y J, Li J Q, Feng Y Q, Xu J L, Zhang H 2019 Adv. Mater. 31 1807981Google Scholar

    [15]

    You Z H, Qiu Q M, Chen H Y, Feng Y Y, Wang X, Wang Y X, Ying Y B 2020 Biosens. Bioelectron. 150 111896Google Scholar

    [16]

    Zhang J B, Ren M Q, Li Y L, Tour J M 2018 ACS Energy Lett. 3 677Google Scholar

    [17]

    Yoon H, Nah J, Kim H, Ko S, Sharifuzzaman M, Barman S C, Xuan X, Kim J Y, Park J Y 2020 Sensor Actuat. B 311 127866Google Scholar

    [18]

    Lin J, Peng Z W, Liu Y Y, Zepeda F R, Ye R Q, Samuel E L, Yacaman M J, Yakobson B I, Tour J M 2014 Nat. Commun. 5 5714Google Scholar

    [19]

    Chyan Y, Ye R Q, Li Y L, Singh S P, Arnusch C J, Tour J M 2018 ACS Nano 12 2176Google Scholar

    [20]

    Le T S D, Park S B, An J N, Lee P S, Kim Y J 2019 Adv. Funct. Mater. 29 1902771Google Scholar

    [21]

    Wu W B, Liang R X, Lu L S, Wang W T, Ran X, Yue D D 2020 Surf. Coat. Technol. 393 125744Google Scholar

    [22]

    Cheng J F, Lin Z X, Wu D, Liu C L, Cao Z 2022 J. Hazard. Mater. 436 129150.Google Scholar

    [23]

    Ryu C, Do H M, In J B. 2024 Appl. Surf. Sci. 643 158696Google Scholar

    [24]

    Rodrigues J, Zanoni J, Gaspar G, Fernandes A J S, Carvalho A F, Santos N F, Monteiro T, Costa F M 2019 Nanoscale Adv. 1 3252Google Scholar

    [25]

    Lal A, Porat H, Hirsch L O, Cahan R, Borenstein A 2024 Appl. Surf. Sci. 643 158660Google Scholar

    [26]

    Ma L A, Chen Y B, Ye XY, Sun L, Wei Z H, Huang L, Chen H X, Wang Q T, Chen E G 2021 Ceram. Int. 47 27487Google Scholar

    [27]

    Huang X, Chen S, Pan J, Wei Z H, Ye X Y, Wang Q T, Ma L A 2024 Ceram. Int. 50 24205Google Scholar

    [28]

    Perdew J P, Burke K, Wang Y 1996 Phys. Rev. B Condens. Matter 54 16533Google Scholar

    [29]

    Sun Z L, Shao Z G, Wang C L, Yang L 2016 Carbon 110 313Google Scholar

    [30]

    Zhang H W, Sun Y S, Li Q W, Wan C X 2022 ACS Sustainable Chem. Eng. 10 11501Google Scholar

    [31]

    Raveendran K, Ganesh A, Khilar K C 1996 Fuel 75 987Google Scholar

    [32]

    Babinszki B, Sebestyén Z, Jakab E, Kőhalmi L, Bozi J, Várhegyi G, Wang L , Skreiberg Ø, Czégéy Z 2021 Bioresour. Technol. 338 125567Google Scholar

    [33]

    Sugioka K, Cheng Y 2014 Light Sci. Appl. 3 e149Google Scholar

    [34]

    Chen L F, Yu H, Zhong J S, Wu J, Su W T 2018 J. Alloys Compd. 749 60Google Scholar

    [35]

    Keiluweit M, Nico P S, Johnson M G, Kleber M 2010 Environ. Sci. Technol. 44 1247Google Scholar

    [36]

    Yu S J, Wang L Z, Li Q H, Zhang Y G, Zhou H 2022 Mater. Today Sustain. 19 100209Google Scholar

    [37]

    Miao M, Zuo S L, Zhao Y Y, Wang Y F, Xia H A, Tan C, Gao H 2018 Carbon 140 504Google Scholar

    [38]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018 Chem. Soc. Rev. 47 1822Google Scholar

    [39]

    Arulkumar E, Shree S S, Thanikaikarasan S 2024 J. Mater Sci. Mater. EL 35 198Google Scholar

    [40]

    杨孟骐, 姬宇航, 梁琦, 王长昊, 张跃飞, 张铭, 王波, 王如志 2020 物理学报 69 167805Google Scholar

    Yang M Q, Ji Y H, Liang Q, Wang C H, Zhang Y F, Zhang M, Wang B, Wang R Z 2020 Acta Phys. Sin. 69 167805Google Scholar

    [41]

    Zhang Y H, Ding H, Liu C X, Zhang J C, Wang C B, Guo W H, Ji Q Y, Zhao J Y, Zi Y Y 2024 Diamond Relat. Mater. 144 110972Google Scholar

    [42]

    Chu Y L, Young S J, Cai D Y, Chu T T 2021 IEEE J. Electron. Devi. 9 1076Google Scholar

    [43]

    Meng G D, Zhan F Z, She J Y, Xie J N, Zheng Q R, Cheng Y H, Yin Z Y 2023 Nanoscale 15 15994Google Scholar

    [44]

    Fan L N, Chen W, Zhou K, Zheng H, Zheng P, Zheng L, Zhang Y 2023 ACS Appl. Electron. Mater. 5 123Google Scholar

  • [1] 郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋. 石墨烯的形貌特征对其场发射性能的影响. 物理学报, doi: 10.7498/aps.73.20231784
    [2] 陈程程, 刘立英, 王如志, 宋雪梅, 王波, 严辉. 不同基底的GaN纳米薄膜制备及其场发射增强研究. 物理学报, doi: 10.7498/aps.62.177701
    [3] 胡小颖, 王淑敏, 裴艳慧, 田宏伟, 朱品文. 碳纳米片-碳纳米管复合材料的一步合成及其场 发射性质研究. 物理学报, doi: 10.7498/aps.62.038101
    [4] 吕文辉, 张帅. 接触电阻对碳纳米管场发射的影响. 物理学报, doi: 10.7498/aps.61.018801
    [5] 张培增, 李瑞山, 谢二庆, 杨华, 王璇, 王涛, 冯有才. 电化学方法制备ZnO纳米颗粒掺杂类金刚石薄膜及其场发射性能研究. 物理学报, doi: 10.7498/aps.61.088101
    [6] 杨延宁, 张志勇, 张富春, 张威虎, 闫军锋, 翟春雪. 纳米金刚石的变温场发射. 物理学报, doi: 10.7498/aps.59.2666
    [7] 秦玉香, 胡 明. 钛碳化物改性碳纳米管的场发射性能. 物理学报, doi: 10.7498/aps.57.3698
    [8] 王新庆, 李 良, 褚宁杰, 金红晓, 葛洪良. 纳米碳管阵列场发射电流密度的理论数值优化. 物理学报, doi: 10.7498/aps.57.7173
    [9] 周 江, 韦德远, 徐 骏, 李 伟, 宋凤麒, 万建国, 徐 岭, 马忠元. 激光晶化形成纳米硅材料的场电子发射性质研究. 物理学报, doi: 10.7498/aps.57.3674
    [10] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响. 物理学报, doi: 10.7498/aps.57.7912
    [11] 元 光, 郭大勃, 顾长志, 窦 艳, 宋 航. 单颗粒CVD金刚石的场发射. 物理学报, doi: 10.7498/aps.56.143
    [12] 雷 达, 曾乐勇, 夏玉学, 陈 松, 梁静秋, 王维彪. 带栅极纳米线冷阴极的场增强因子研究. 物理学报, doi: 10.7498/aps.56.6616
    [13] 罗 敏, 王新庆, 葛洪良, 王 淼, 徐亚伯, 陈 强, 李利培, 陈 磊, 管高飞, 夏 娟, 江 丰. 排列形状及阵列数目对纳米导线阵列场发射性能的影响. 物理学报, doi: 10.7498/aps.55.6061
    [14] 胡利勤, 林志贤, 郭太良, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 取向和非取向In2O3纳米线的场发射研究. 物理学报, doi: 10.7498/aps.55.6136
    [15] 李 强, 梁二军. 碳、碳氮和硼碳氮纳米管场发射性能的比较研究. 物理学报, doi: 10.7498/aps.54.5931
    [16] 王新庆, 王 淼, 李振华, 杨 兵, 王凤飞, 何丕模, 徐亚伯. 单根纳米导线场发射增强因子的计算. 物理学报, doi: 10.7498/aps.54.1347
    [17] 李海钧, 顾长志, 窦 艳, 李俊杰. 单根准直碳纳米纤维的场发射特性. 物理学报, doi: 10.7498/aps.53.2258
    [18] 宋教花, 张耿民, 张兆祥, 孙明岩, 薛增泉. 多壁碳纳米管阵列场发射研究. 物理学报, doi: 10.7498/aps.53.4392
    [19] 张兆祥, 张耿民, 侯士敏, 张 浩, 顾镇南, 刘惟敏, 赵兴钰, 薛增泉. 利用场发射显微镜研究O2对单壁碳纳米管场发射的影响. 物理学报, doi: 10.7498/aps.52.1282
    [20] 孙建平, 张兆祥, 侯士敏, 赵兴钰, 施祖进, 顾镇南, 刘惟敏, 薛增泉. 用场发射显微镜研究单壁碳纳米管场发射. 物理学报, doi: 10.7498/aps.50.1805
计量
  • 文章访问数:  246
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-24
  • 修回日期:  2025-04-21
  • 上网日期:  2025-05-10

/

返回文章
返回