搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO+分子离子X2Σ+, A2Π和B2Σ+态的不透明度

安斯腰力吐 王佟 肖利丹 刘迪 张夏 闫冰

引用本文:
Citation:

CO+分子离子X2Σ+, A2Π和B2Σ+态的不透明度

安斯腰力吐, 王佟, 肖利丹, 刘迪, 张夏, 闫冰
cstr: 32037.14.aps.74.20250380

Opacities of X2Σ+, A2Π, and B2Σ+ states of CO+ molecule ion

AN Siyaolitu, WANG Tong, XIAO Lidan, LIU Di, ZHANG Xia, YAN Bing
cstr: 32037.14.aps.74.20250380
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 一氧化碳分子离子(CO+)在大气及天体物理环境中起着关键作用, 其不透明度的理论研究对辐射输运建模具有重要意义. 本文基于实验观测数据, 采用Modified-Morse (MMorse)势函数改进并构建了CO+分子离子X2Σ+, A2Π和B2Σ+电子态的势能曲线, 进一步提取了振动能级和光谱常数. 同时, 利用考虑Davidson修正的多参考组态相互作用(MRCI+Q)方法计算了势能曲线和电偶极跃迁矩. 改进获得的MMorse势与计算得到的势能曲线非常吻合, 且光谱常数和振动能级与其他理论和实验数据符合较好. 结合MMorse势函数和从头计算获得的电偶极跃迁矩, 计算了CO+分子离子在100 atm (1 atm=1.01×105 Pa)压强下, 298—15000 K温度范围内的不透明度, 并探究了不同温度对高温谱的影响. 研究结果表明, 高温环境(T > 5000 K)会导致不同能带系统的谱线展宽与边界模糊, 这种混合效应在T > 10000 K时尤为突出, 揭示了高温下分子离子光谱退化的微观机制. 本研究可以为天体物理领域提供一些理论依据和数据支持. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00136中访问获取.
    Carbon monoxide cation (CO+) plays a dominant role in some astrophysical atmosphere environments, and theoretical research on its opacity is crucial for modeling radiative transport. In this work, based on experimentally observed vibrational energy levels of the X2Σ+, A2Π, and B2Σ+ electronic states of CO+, the potential energy curves are improved and constructed using a modified Morse (MMorse) potential function, then the vibrational energy levels and spectroscopic constants are extracted. In the meantime, the internally contracted multireference configuration interaction (MRCI) method with Davison size-extensivity correction (+Q) is used to calculate the potential energy curves and transition dipole moments. The refined MMorse potential shows excellent agreement with the computed potential energy curves, while the spectroscopic constants and vibrational levels indicate strong consistency with existing theoretical and experimental data. The opacities of the CO+ molecule is computed at different temperatures under the pressure of 100 atm. The result shows that as temperature rises, the opacities of transitions in the long-wavelength range increases because of the larger population on excited electronic states at higher temperatures. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00136.
      通信作者: 张夏, xiazhang@jlu.edu.cn ; 闫冰, yanbing@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12274178, 12374230)资助的课题.
      Corresponding author: ZHANG Xia, xiazhang@jlu.edu.cn ; YAN Bing, yanbing@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274178, 12374230).
    [1]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. B 29 23101Google Scholar

    [2]

    Li R, Sang J Q, Lin X H, Li J J, Liang G Y, Wu Y 2022 Chin. Phys. B 31 103101Google Scholar

    [3]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. Lett. 37 123101Google Scholar

    [4]

    陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国 2022 物理学报 71 143102Google Scholar

    Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102Google Scholar

    [5]

    Xiao L, An S, Liu D, Minaev B F, Ågren H, Yan B 2025 Spectrochim. Acta, Part A 330 125704Google Scholar

    [6]

    Herzberg G 1950 Molecular Spectra and Molecular Structure: I (New York: Van Nostrand Reinhold Company) pp240–491

    [7]

    Davies P B, Rothwell W J 1985 J. Chem. Phys. 83 5450Google Scholar

    [8]

    Krishna Swamy K S 1986 Earth Moon Planets 34 281Google Scholar

    [9]

    Haridass C, Prasad C V V, Reddy S P 2000 J. Mol. Spectrosc. 199 180Google Scholar

    [10]

    Krupenie P H 1966 The Band Spectrum of Carbon Monoxide (Gaithersburg, MD: National Institute of Standards and Technology) pp1–37

    [11]

    Huebner W F 1990 Physics and Chemistry of Comets (Berlin Heidelberg: Springer) pp245–303

    [12]

    Haridass C, Prasad C V V, Reddy S P 1992 ApJ 388 669Google Scholar

    [13]

    Bembenek Z, Domin U, Kepa R, Porada K, Rytel M, Zachwieja M, Jakubek Z, Janjic J D 1994 J. Mol. Spectrosc. 165 205Google Scholar

    [14]

    Zhuang H, Yang X H, Wu S H, Bi Z Y, Ma L S, Liu Y Y, Chen Y Q 2001 Mol. Phys. 99 1447Google Scholar

    [15]

    Yang X H, Wu Y D, Chen Y Q 2007 J. Mol. Spectrosc. 245 84Google Scholar

    [16]

    Baltzer P, Lundqvist M, Wannberg B, Karlsson L, Larsson M, Hayes M A, West J B, Siggel M R F, Parr A C, Dehmer J L 1994 J. Phys. B: At. Mol. Opt. Phys. 27 4915Google Scholar

    [17]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure 4: Constants of Diatomic Molecules (New York: van Nostrand Reinhold Comp

    [18]

    Reddy R R, Viswanath R 1990 J. Astrophys. Astron. 11 67Google Scholar

    [19]

    Kępa R, Malak Z, Szajna W, Zachwieja M 2003 J. Mol. Spectrosc. 220 58Google Scholar

    [20]

    Wu Y D, Yang X H, Guo Y C, Chen Y Q 2008 J. Mol. Spectrosc. 248 81Google Scholar

    [21]

    Coxon J A, Kępa R, Piotrowska I 2010 J. Mol. Spectrosc. 262 107Google Scholar

    [22]

    Hamilton P A, Hughes A N, Sales K D 1993 J. Chem. Phys. 99 436Google Scholar

    [23]

    Araújo J P, Ballester M Y, Lugão I G, Silva R P, Martins M P 2024 J. Mol. Model 30 352Google Scholar

    [24]

    Tobias I, Fallon R J, Vanderslice J T 1960 J. Chem. Phys. 33 1638Google Scholar

    [25]

    Krupenie P H, Weissman S 1965 J. Chem. Phys. 43 1529Google Scholar

    [26]

    Singh R B, Rai D K 1966 J. Mol. Spectrosc. 19 424Google Scholar

    [27]

    Locht R 1977 Chem. Phys. 22 13Google Scholar

    [28]

    Honjou N, Sasaki F 1979 Mol. Phys. 37 1593Google Scholar

    [29]

    Rosmus P, Werner H J 1982 Mol. Phys. 47 661Google Scholar

    [30]

    Okada K, Iwata S 2000 J. Chem. Phys. 112 1804Google Scholar

    [31]

    Mezei J Z, Backodissa-Kiminou R D, Tudorache D E, Morel V, Chakrabarti K, Motapon O, Dulieu O, Robert J, Tchang-Brillet W Ü L, Bultel A, Urbain X, Tennyson J, Hassouni K, Schneider I F 2015 Plasma Sources Sci. Technol. 24 035005Google Scholar

    [32]

    Weck P F, Schweitzer A, Kirby K, Hauschildt P H, Stancil P C 2004 Astrophys. J. 613 567Google Scholar

    [33]

    Mourik T V, Wilson A K, Dunning Jr T H 1999 Mol. Phys. 99 529Google Scholar

    [34]

    Werner H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 WIREs Comput. Mol. Sci. 2 242Google Scholar

    [35]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. Transfer 186 167Google Scholar

    [36]

    Yurchenko S N, Lodi L, Tennyson J, Stolyarov A V 2016 Comput. Phys. Commun. 202 262Google Scholar

    [37]

    Yurchenko S N, Al-Refaie A F, Tennyson J 2018 Astron. Astrophys. 614 A131Google Scholar

    [38]

    https://physics.nist.gov/cgi-bin/ASD/levels_pt.pl [2025-3-11]

    [39]

    Ventura L R, Da Silva R S, Ballester M Y, Fellows C E 2020 J. Quant. Spectrosc. Ra. Transfer 256 107312Google Scholar

    [40]

    Reddy R R, Nazeer Ahammed Y, Rama Gopal K, Baba Basha D 2004 J. Quant. Spectrosc. Ra. Transfer 85 105Google Scholar

    [41]

    Szajna W, Kepa R, Zachwieja M 2004 Eur. Phys. J. D 30 49Google Scholar

    [42]

    Hakalla R, Szajna W, Piotrowska I, Malicka M I, Zachwieja M, Kępa R 2019 J. Quant. Spectrosc. Ra. Transfer 234 159Google Scholar

    [43]

    Szajna W, Kȩpa R, Field R W, Hakalla R 2024 J. Quant. Spectrosc. Ra. Transfer 324 109059Google Scholar

  • 图 1  CO+的X2Σ+, A2Π和B2Σ+态的势能曲线

    Fig. 1.  Potential energy curves for the X2Σ+, A2Π and B2Σ+ states of CO+.

    图 2  CO+分子离子X2Σ+, A2Π和B2Σ+态的改进与实验的振动能级之间误差的绝对值

    Fig. 2.  Absolute value of errors of the vibrational energy levels between our refined results and those given by experiment for the X2Σ+, A2Π and B2Σ+ electronic states.

    图 3  一氧化碳阳离子的电偶极跃迁矩随核间距R的变化

    Fig. 3.  Transition dipole moments for different states of CO+ cation as a function of internuclear distance R.

    图 4  CO+分子离子的配分函数

    Fig. 4.  Partition functions of CO+.

    图 5  在100 atm压强时, CO+分子离子在不同温度下, 各个电子态之间的跃迁对整体不透明度的贡献 (a) 298 K; (b) 2000 K

    Fig. 5.  Contributions of electronic state transitions to the total opacity of CO+ cation at different temperatures under pressure of 100 atm: (a) 298 K; (b) 2000 K.

    图 6  在100 atm 压强下, CO+分子离子X2Σ+, A2Π和B2Σ+态的不透明度随温度的变化(T = 298, 2000, 5000, 10000, 15000 K)

    Fig. 6.  Opacities of CO+ cation for temperatures of 298 K, 2000 K, 5000 K, 10000 K and 15000 K at a pressure of 100 atm including transitions of B2Σ+-X2Σ+, B2Σ+-A2Π and A2Π-X2Σ+.

    表 1  CO+分子离子X2Σ+, A2Π和B2Σ+态的振动能级间隔(单位cm–1)

    Table 1.  Vibrational energy level intervals for X2Σ+, A2Π和B2Σ+ state of CO+ (in cm–1).

    v X2Σ+ A2Π B2Σ+
    Refined Exp[21] Refined Exp[21] Refined Exp[39]
    1 2183.96 2183.89 1535.08 1535.05 1679.49 1679.55
    2 2153.53 2153.56 1508.02 1508.03 1626.18 1626.61
    3 2123.18 2123.24 1481.08 1481.11 1575.66 1575.77
    4 2092.87 2092.92 1454.26 1454.29 1527.62 1527.02
    5 2062.56 2062.58 1427.55 1427.56 1481.78 1480.36
    6 2032.21 2032.20 1400.93 1400.92 1437.90 1435.78
    7 2001.79 2001.79 1374.40 1374.40 1395.74
    8 1971.26 1971.33 1347.94 1347.95 1355.11
    9 1940.61 1940.82 1321.56 1321.32 1315.81
    10 1909.80 1910.26 1295.25 1295.09 1277.70
    11 1878.80 1879.68 1269.00 1268.82 1240.61
    12 1847.60 1849.06 1242.80 1242.60 1204.42
    13 1816.18 1818.42 1216.65 1217.00 1169.02
    14 1784.50 1787.79 1190.54 1190.00 1134.28
    15 1752.56 1757.19 1164.47 1100.11
    16 1720.33 1726.60 1138.43 1066.44
    17 1687.79 1695.30 1112.43 1033.17
    18 1654.93 1666.00 1086.45 1000.24
    19 1621.72 1632.00 1060.50 967.57
    20 1588.14 1601.00 1034.56 935.11
    下载: 导出CSV

    表 2  CO+分子离子的光谱常数

    Table 2.  Spectroscopic constants of the doublet Λ-S states for CO+.

    Λ-S statesTe/cm–1Reωe/cm–1ωeχe/cm–1Be/cm–1De/cm–1
    X2Σ+Refined01.11522214.7215.23121.976767533.4167
    Theory[30]01.1192214.614.7566731
    Theory[39]2212.0517.741.98056167813.483
    Theory[40]01.11532214.1515.151.9769
    Exp[30]01.11512215.115.2767535
    Exp[39]2214.3904(10)15.1304(31)1.976964(12)
    Exp[41]2214.2219(79)15.1509(31)1.976949(26)
    A2ΠRefined20733.00151.24371561.1713.32361.589546186.90
    Theory[30]205941.2461570.012.8646473
    Theory[40]19628.21.24381562.7913.931.5894
    Exp[30]20733.31.24371562.013.5347128
    B2Σ+Refined45876.69891.16891712.8422.32201.798937988.4876
    Theory[30]459791.1701742.725.9937123
    Theory[39]45868.201742.9419.611.80518437854.825
    Exp[30]45876.71.16871734.127.9237692
    Exp[39]45878.204(95)1734.480(98)28.033(90)1.799491(21)
    Exp[41]45876.724(48)1734.626(86)28.272(38)1.799526(20)
    下载: 导出CSV
  • [1]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. B 29 23101Google Scholar

    [2]

    Li R, Sang J Q, Lin X H, Li J J, Liang G Y, Wu Y 2022 Chin. Phys. B 31 103101Google Scholar

    [3]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. Lett. 37 123101Google Scholar

    [4]

    陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国 2022 物理学报 71 143102Google Scholar

    Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102Google Scholar

    [5]

    Xiao L, An S, Liu D, Minaev B F, Ågren H, Yan B 2025 Spectrochim. Acta, Part A 330 125704Google Scholar

    [6]

    Herzberg G 1950 Molecular Spectra and Molecular Structure: I (New York: Van Nostrand Reinhold Company) pp240–491

    [7]

    Davies P B, Rothwell W J 1985 J. Chem. Phys. 83 5450Google Scholar

    [8]

    Krishna Swamy K S 1986 Earth Moon Planets 34 281Google Scholar

    [9]

    Haridass C, Prasad C V V, Reddy S P 2000 J. Mol. Spectrosc. 199 180Google Scholar

    [10]

    Krupenie P H 1966 The Band Spectrum of Carbon Monoxide (Gaithersburg, MD: National Institute of Standards and Technology) pp1–37

    [11]

    Huebner W F 1990 Physics and Chemistry of Comets (Berlin Heidelberg: Springer) pp245–303

    [12]

    Haridass C, Prasad C V V, Reddy S P 1992 ApJ 388 669Google Scholar

    [13]

    Bembenek Z, Domin U, Kepa R, Porada K, Rytel M, Zachwieja M, Jakubek Z, Janjic J D 1994 J. Mol. Spectrosc. 165 205Google Scholar

    [14]

    Zhuang H, Yang X H, Wu S H, Bi Z Y, Ma L S, Liu Y Y, Chen Y Q 2001 Mol. Phys. 99 1447Google Scholar

    [15]

    Yang X H, Wu Y D, Chen Y Q 2007 J. Mol. Spectrosc. 245 84Google Scholar

    [16]

    Baltzer P, Lundqvist M, Wannberg B, Karlsson L, Larsson M, Hayes M A, West J B, Siggel M R F, Parr A C, Dehmer J L 1994 J. Phys. B: At. Mol. Opt. Phys. 27 4915Google Scholar

    [17]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure 4: Constants of Diatomic Molecules (New York: van Nostrand Reinhold Comp

    [18]

    Reddy R R, Viswanath R 1990 J. Astrophys. Astron. 11 67Google Scholar

    [19]

    Kępa R, Malak Z, Szajna W, Zachwieja M 2003 J. Mol. Spectrosc. 220 58Google Scholar

    [20]

    Wu Y D, Yang X H, Guo Y C, Chen Y Q 2008 J. Mol. Spectrosc. 248 81Google Scholar

    [21]

    Coxon J A, Kępa R, Piotrowska I 2010 J. Mol. Spectrosc. 262 107Google Scholar

    [22]

    Hamilton P A, Hughes A N, Sales K D 1993 J. Chem. Phys. 99 436Google Scholar

    [23]

    Araújo J P, Ballester M Y, Lugão I G, Silva R P, Martins M P 2024 J. Mol. Model 30 352Google Scholar

    [24]

    Tobias I, Fallon R J, Vanderslice J T 1960 J. Chem. Phys. 33 1638Google Scholar

    [25]

    Krupenie P H, Weissman S 1965 J. Chem. Phys. 43 1529Google Scholar

    [26]

    Singh R B, Rai D K 1966 J. Mol. Spectrosc. 19 424Google Scholar

    [27]

    Locht R 1977 Chem. Phys. 22 13Google Scholar

    [28]

    Honjou N, Sasaki F 1979 Mol. Phys. 37 1593Google Scholar

    [29]

    Rosmus P, Werner H J 1982 Mol. Phys. 47 661Google Scholar

    [30]

    Okada K, Iwata S 2000 J. Chem. Phys. 112 1804Google Scholar

    [31]

    Mezei J Z, Backodissa-Kiminou R D, Tudorache D E, Morel V, Chakrabarti K, Motapon O, Dulieu O, Robert J, Tchang-Brillet W Ü L, Bultel A, Urbain X, Tennyson J, Hassouni K, Schneider I F 2015 Plasma Sources Sci. Technol. 24 035005Google Scholar

    [32]

    Weck P F, Schweitzer A, Kirby K, Hauschildt P H, Stancil P C 2004 Astrophys. J. 613 567Google Scholar

    [33]

    Mourik T V, Wilson A K, Dunning Jr T H 1999 Mol. Phys. 99 529Google Scholar

    [34]

    Werner H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 WIREs Comput. Mol. Sci. 2 242Google Scholar

    [35]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. Transfer 186 167Google Scholar

    [36]

    Yurchenko S N, Lodi L, Tennyson J, Stolyarov A V 2016 Comput. Phys. Commun. 202 262Google Scholar

    [37]

    Yurchenko S N, Al-Refaie A F, Tennyson J 2018 Astron. Astrophys. 614 A131Google Scholar

    [38]

    https://physics.nist.gov/cgi-bin/ASD/levels_pt.pl [2025-3-11]

    [39]

    Ventura L R, Da Silva R S, Ballester M Y, Fellows C E 2020 J. Quant. Spectrosc. Ra. Transfer 256 107312Google Scholar

    [40]

    Reddy R R, Nazeer Ahammed Y, Rama Gopal K, Baba Basha D 2004 J. Quant. Spectrosc. Ra. Transfer 85 105Google Scholar

    [41]

    Szajna W, Kepa R, Zachwieja M 2004 Eur. Phys. J. D 30 49Google Scholar

    [42]

    Hakalla R, Szajna W, Piotrowska I, Malicka M I, Zachwieja M, Kępa R 2019 J. Quant. Spectrosc. Ra. Transfer 234 159Google Scholar

    [43]

    Szajna W, Kȩpa R, Field R W, Hakalla R 2024 J. Quant. Spectrosc. Ra. Transfer 324 109059Google Scholar

  • [1] 曾交龙, 高城, 袁建民. 低密度铝铁金等离子体辐射不透明度数据库. 物理学报, 2025, 74(12): 125202. doi: 10.7498/aps.74.20250301
    [2] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl阴离子的光谱性质和跃迁性质. 物理学报, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [3] 陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国. $ {\text{N}}_{2}^{+} $分子离子$ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, $ {{\text{A}}^{\text{2}}}{{\Pi}_{\text{u}}} $$ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $态的不透明度. 物理学报, 2022, 71(19): 193101. doi: 10.7498/aps.71.20220734
    [4] 陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国. 氮气分子${X^1}\Sigma _{\rm{g}}^ + ,{a^\prime }^1\Sigma _{\rm{u}}^ - ,{a^1}{\Pi _{\rm{g}}} \text{和} { b}^1\Pi_{\rm u} $电子态的不透明度. 物理学报, 2022, 71(14): 143102. doi: 10.7498/aps.71.20220043
    [5] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211688
    [6] 魏长立, 廖浩, 罗太盛, 任银拴, 闫冰. Na2+离子较低电子态势能曲线和光谱常数的理论研究. 物理学报, 2018, 67(24): 243101. doi: 10.7498/aps.67.20181690
    [7] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略, 吕淑霞. 一氟化碳电子态的光谱性质和预解离机理的理论研究. 物理学报, 2015, 64(15): 153101. doi: 10.7498/aps.64.153101
    [8] 王杰敏, 王希娟, 陶亚萍. 75As32S+和75As34S+离子的光谱常数与分子常数. 物理学报, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [9] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [10] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [11] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [12] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究. 物理学报, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [13] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [14] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究. 物理学报, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [15] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [16] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [17] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [18] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数. 物理学报, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [19] 施德恒, 刘玉芳, 孙金锋, 张金平, 朱遵略. 基态O和D原子的低能弹性碰撞及OD(X2Π)自由基的准确解析势与分子常数. 物理学报, 2009, 58(4): 2369-2375. doi: 10.7498/aps.58.2369
    [20] 王藩侯, 陈敬平, 孟续军, 周显明, 李西军, 孙永盛, 经福谦. 冲击压缩产生的氩等离子体辐射不透明度研究. 物理学报, 2001, 50(7): 1308-1312. doi: 10.7498/aps.50.1308
计量
  • 文章访问数:  271
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-24
  • 修回日期:  2025-05-12
  • 上网日期:  2025-05-14

/

返回文章
返回