搜索

x
中国物理学会期刊

铁电PbTiO3中的多铁性Aurivillius型界面的第一性原理研究

CSTR: 32037.14.aps.74.20250406

First-principles study of multiferroic Aurivillius-type interfaces in ferroelectric PbTiO3

CSTR: 32037.14.aps.74.20250406
PDF
HTML
导出引用
  • 多铁性材料因铁电序和磁序之间的交叉耦合机制所衍生的新奇量子效应(如磁电耦合、拓扑电畴等)而备受关注. 然而, 受限于铁电性源于d0电子构型而铁磁性依赖于dn电子填充的微观机制互斥性, 具有磁电耦合特性的本征多铁性材料仍然有限. 本研究基于第一性原理密度泛函理论计算, 提出通过构建Aurivillius型界面层来调控PbTiO3钙钛矿的电子结构, 成功诱导出界面局域磁矩. 计算结果表明, 该界面层在保持强电极化(高达116.88 μC/cm2)的同时, 通过界面极化电荷调制界面处氧原子的电子占据态从而诱导出界面磁性, 实现了PbTiO3的磁性与极性之间的耦合. 值得注意的是, 这种磁电耦合的多铁态呈现出显著的界面局域特征, 随着层数的增加, 局域磁矩迅速衰减. 我们的研究提出了一种设计多铁性层并分析了可通过改变极化方向调控磁矩的新机制, 为实现具有磁电耦合的多铁性材料器件提供了新范式.

     

    Multiferroic materials have attracted considerable attention due to their novel quantum phenomena, including magnetoelectric coupling and topological domains, which are derived from the cross-coupling mechanism between ferroelectric order and magnetic order. However, the discovery of intrinsic multiferroic materials exhibiting magnetoelectric coupling remains limited, as ferroelectricity typically originates from the d0 electronic configuration, while ferromagnetism relies on partially filled dn state. Based on first principles calculations, this work demonstrates that electronic structure of PbTiO3 perovskite can be engineered by introducing an Aurivillius-type interface layer, which induces localized magnetic moments at the interface. The results reveal that when the system maintains strong electric polarization (up to 116.88 μC/cm2), the interfacial charge changes the electron occupancy of oxygen atoms, thereby resulting in interface magnetism and magnetoelectric coupling in PbTiO3. Notably, this multiferroic state exhibits pronounced interface localization, with the magnetic moment decaying rapidly as the layer thickness increases. Importantly, the emergent magnetism is asymmetric, resulting in a net positive spontaneous magnetization of 2.0μB. This observation indicates the emergence of ferrimagnetism at the interface. Furthermore, the interfacial region displays p-type conductivity behavior, exhibiting characteristics of two-dimensional hole gas (2DHG), and the density of holes and the density of charge carriers at the interface are several times higher than those in typical heterostructures. Overall, our work proposes a novel mechanism for designing multiferroic and providing a promising strategy for developing magnetoelectric-coupled multiferroic devices.

     

    目录

    /

    返回文章
    返回