-
光与金属纳米手性结构作用可展现超强的等离激元圆二色性。然而,光激发下金属纳米手性结构的光力与光热的协同作用效应如何影响其圆二色性,仍缺乏深入的理解。本研究针对具有相邻同手性中心的金纳米棒三聚体,探讨了圆偏振光激发下的不对称光力与光热的协同作用效应对其手性结构及相应等离激元圆二色性质的影响。基于有限元法的模拟计算表明:在光热温度梯度场激活金纳米棒手性三聚体的结构动态变化的同时,左旋/右旋圆偏振光产生的不对称光扭矩将导致金纳米棒三聚体几何结构(特别是手性中心的扭转角)出现不对称变化,从而使金纳米棒三聚体的等离激元圆二色光谱响应呈现明显的偏振依赖性。进一步的实验研究表明:基于这种不对称光力与光热的协同作用效应,左旋和右旋圆偏振光能够用于调控等离激元圆二色光谱响应的不对称增强和抑制。本研究不仅为研究光学调控纳米等离激元手性组装结构奠定了理论基础,也为实验设计和制备物理方法调控的先进纳米光子学器件提供了重要参考。Nano-plasmonic chiral structures exhibit stronger plasmonic circular dichroism than most organic materials. In addition to the circular dichroism response, the interaction between light and nano-plasmonic chiral structures also involves the photothermal and optomechanical effects. However, the synergistic effect between the photothermal and optomechanical effects under circularly polarized light excitation remains poorly understood. This article investigates the synergistic effect of the photothermal and optomechanical effects in chiral gold nanorod trimers. The asymmetric photothermal and optomechanical effects in gold nanorod trimers with adjacent homochiral centers are analyzed by finite element simulation. The simulation results show that the dynamic structure of the chiral gold nanorod trimers is activated when the photothermal temperature reaches the threshold value. At the same time, the asymmetric optical torque generated by left- and right-handed circularly polarized light will lead to asymmetric changes in the geometry of the gold nanorod trimer, especially in the twist angle of the chiral center, so that the spectral response of the gold nanorod trimer is polarization-dependent. More significantly, based on the synergistic effect of the photothermal and optomechanical effects, experimental results show that the chiral gold nanorod oligomers can be used to control the asymmetric enhancement and suppression of the plasmonic circular dichroic spectral response through the enantioselective interaction of left- and right-handed circularly polarized light. This study provides an important reference for the design of advanced nano-photonics devices.
-
Keywords:
- nano-plasmonic chirality /
- circular dichroism /
- asymmetric optomechanical effect /
- asymmetric photothermal effect
-
[1] Gerlach H 2013 Chirality 25 684
[2] Morrow S M, Bissette A J, Fletcher S P 2017 Nat. Nanotechnol. 12 410
[3] Hentschel M, Schaferling M, Duan X, Giessen H, Liu N 2017 Sci. Adv. 3 e1602735
[4] Ma W, Xu L, de Moura A F, Wu X, Kuang H, Xu C, Kotov N A 2017 Chem. Rev. 117 8041
[5] Ben-Moshe A, Maoz B M, Govorov A O, Markovich G 2013 Chem. Soc. Rev. 42 7028
[6] Valev V K, Baumberg J J, Sibilia C, Verbiest T 2013 Adv. Mater. 25 2517
[7] Soukoulis C M, Wegener M 2011 Nat. Photonics 5 523
[8] McPeak K M, van Engers C D, Bianchi S, Rossinelli A, Poulikakos L V, Bernard L, Herrmann S, Kim D K, Burger S, Blome M, Jayanti S V, Norris D J 2015 Adv. Mater. 27 6244
[9] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M 2009 Science 325 1513
[10] Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N, Kadodwala M 2010 Nat. Nanotechnol. 5 783
[11] Ma W, Xu L, Wang L, Xu C, Kuang H 2019 Adv. Funct. Mater. 29 1805512
[12] Solomon M L, Saleh A, Poulikakos L V, Abendroth J M, Tadesse L F, Dionne J A 2020 Acc. Chem. Res. 53 588
[13] Hao C, Xu L, Ma W, Wu X, Wang L, Kuang H, Xu C 2015 Adv. Funct. Mater. 25 5816
[14] Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J 2021 Chem. Rev. 121 13342
[15] Chen H, Shao L, Li Q, Wang J 2013 Chem. Soc. Rev. 42 2679
[16] Hu Z, Meng D, Lin F, Zhu X, Fang Z, Wu X 2019 Adv. Opt. Mater. 7 1801590
[17] Nguyen M K, Kuzyk A 2019 ACS Nano 13 13615
[18] Wang M, Dong J, Zhou C, Xie H, Ni W, Wang S, Jin H, Wang Q 2019 ACS Nano 13 13702
[19] D P, Shah R K, S K, Soni S 2022 Appl. Nanosci. 12 2045
[20] Baffou G, Girard C, Quidant R 2010 Phys. Rev. Lett. 104 136805
[21] Huang W H, Li S F, Xu H T, Xiang Z X, Long Y B, Deng H D 2018 Opt. Express 26 6202
[22] Zhang Q, Xiao J J, Zhang X M, Yao Y 2013 Opt. Commun. 301 121
[23] Avalos-Ovando O, Besteiro L V, Movsesyan A, Markovich G, Liedl T, Martens K, Wang Z, Correa-Duarte M A, Govorov A O 2021 Nano Lett. 21 7298
[24] Zhao W, Zhang W, Wang R Y, Ji Y, Wu X, Zhang X 2019 Adv. Funct. Mater. 29 1900587
[25] Song J, Ji C Y, Ma X, Li J, Zhao W, Wang R Y 2024 J. Phys. Chem. Lett. 15 975
[26] Johnson P B, W. C R 1972 Phys. Rev. B 6 4370
[27] Song M, Tong L, Liu S, Zhang Y, Dong J, Ji Y, Guo Y, Wu X, Zhang X, Wang R Y 2021 ACS Nano 15 5715
[28] Ma W, Kuang H, Xu L, Ding L, Xu C, Wang L, Kotov N A 2013 Nat. Commun. 4 2689
[29] Wang S, Liu X, Mourdikoudis S, Chen J, Fu W, Sofer Z, Zhang Y, Zhang S, Zheng G 2022 ACS Nano 16 19789
[30] Tan L, Fu W, Gao Q, Wang P P 2024 Adv. Mater. 36 2309033
[31] Kim R M, Huh J H, Yoo S, Kim T G, Kim C, Kim H, Han J H, Cho N H, Lim Y C, Im S W, Im E, Jeong J R, Lee M H, Yoon T Y, Lee H Y, Park Q H, Lee S, Nam K T 2022 Nature 612 470
计量
- 文章访问数: 23
- PDF下载量: 2
- 被引次数: 0