搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

托卡马克圆截面等离子体磁流体平衡、稳定性与运行比压极限

沈勇 董家齐 石中兵 何宏达 赵开君 彭晓东 曲洪鹏 李佳 孙爱萍

引用本文:
Citation:

托卡马克圆截面等离子体磁流体平衡、稳定性与运行比压极限

沈勇, 董家齐, 石中兵, 何宏达, 赵开君, 彭晓东, 曲洪鹏, 李佳, 孙爱萍

Study of circular cross-section plasmas in HL-2A tokamak: MHD equilibrium, stability and operational $ \boldsymbol{\beta } $ limit

SHEN Yong, DONG Jiaqi, SHI Zhongbing, HE Hongda, ZHAO Kaijun, PENG Xiaodong, QU Hongpeng, LI Jia, SUN Aiping
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 圆形截面等离子体是最基本的托卡马克等离子体形态, 是磁约束聚变实验研究的基础位形. 本文基于HL-2A装置限制器位形放电实验, 研究了托卡马克圆形截面等离子磁流体动力学(MHD)平衡和MHD不稳定性. 研究表明, 当$ {q}_{0}=0.95 $时, $ m/n=1/1 $内扭曲模总是不稳定的. 轴安全因子$ {q}_{0} $和边缘安全因子$ {q}_{{\mathrm{a}}} $的组合决定了等离子体的平衡位形, 也影响着平衡的MHD稳定性, 但其不稳定性增长率与比压($ \beta $)的大小相关联. 在$ {q}_{{\mathrm{a}}} > 2 $和$ {q}_{0} $稍大于$ 1 $的条件下, 可以容易实现内扭曲模和表面扭曲模的稳定. 但当$ {q}_{0} $超过1较多时, 等离子体又变得不稳定, 且等离子体(扭曲)不稳定性强度随$ {q}_{0} $的继续增高而增强. 随着极向比压($ {\beta }_{{\mathrm{p}}} $)的增加, MHD不稳定性会增强, MHD平衡位形横向拉长, Shafranov位移增加, 这反过来又有抑制不稳定性的作用. 计算发现, HL-2A圆形截面等离子体的运行比压极限约为$ {\beta }_{{\mathrm{N}}}^{{\mathrm{c}}}\cong 2.0. $ 较高的$ {q}_{0} $不利于MHD稳定性, 引起比压极限降低. 当$ {q}_{0}=1.3 $时, 得到最大$ {\beta }_{{\mathrm{N}}}\approx 1.8 $. 最后, 基于现有的圆形横截面等离子体, 讨论了影响运行$ \beta $的一些关键因素以及可期实现的高比压和理想比压极限之间的关系问题.
    Circular cross-section plasma is the most basic form of tokamak plasma and the fundamental configuration for magnetic confinement fusion experiments. Based on the HL-2A limiter discharge experiments, the magnetohydrodynamic (MHD) equilibrium and MHD instability of circular cross-section tokamak plasmas are investigated in this work. The results show that when $ {q}_{0}=0.95 $, the internal kink mode of $ m/n=1/1 $ is always unstable. The increase in plasma $ \beta $ (the ratio of thermal pressure to magnetic pressure) can lead to the appearance of external kink modes. The combination of axial safety factor $ {q}_{0} $ and edge safety factor $ {q}_{{\mathrm{a}}} $ determines the equilibrium configuration of the plasma and also affects the MHD stability of the equilibrium, but its growth rate is also related to the size of $ \beta $. Under the condition of $ {q}_{{\mathrm{a}}} > 2 $ and $ {q}_{0} $ slightly greater than $ 1 $, the internal kink mode and surface kink mode can be easily stabilized. However the plasma becomes unstable again and the instability intensity increases as $ {q}_{0} $ continues to increase when $ {q}_{0} $ exceeds $ 1 $. As the poloidal specific pressure ($ {\beta }_{{\mathrm{p}}} $) increases, the MHD instability develops, the equilibrium configuration of MHD elongates laterally, and the Shafranov displacement increases, which in turn has the effect on suppressing instability. Calculations have shown that the maximum $ \beta $ value imposed by the ideal MHD mode in a plasma with free boundary in tokamak experiments is proportional to the normalized current $ {I}_{{\mathrm{N}}} $ ($ {I}_{{\mathrm{N}}}={I}_{{\mathrm{p}}}\left({\mathrm{M}}{\mathrm{A}}\right)/a\left({\mathrm{m}}\right){B}_{0}\left({\mathrm{T}}\right) $), and the maximum specific pressure $ \beta \left({\mathrm{m}}{\mathrm{a}}{\mathrm{x}}\right) $ is calibrated to be $ ~2.01{I}_{{\mathrm{N}}},{\mathrm{ }}{\mathrm{i}}. {\mathrm{e}}. $ $ \beta \left({\mathrm{m}}{\mathrm{a}}{\mathrm{x}}\right)~2.01{I}_{{\mathrm{N}}} $. The operational $ \beta $ limit of HL-2A circular cross-section plasma is approximately $ {\beta }_{{\mathrm{N}}}^{{\mathrm{c}}}\approx 2.0 $. Too high a value of $ {q}_{0} $ is not conducive to MHD stability and leads the $ \beta $ limit value to decrease. When $ {q}_{0}=1.3 $, we obtain a maximum value of $ {\beta }_{{\mathrm{N}}} $ of approximately $ 1.8 $. Finally, based on the existing circular cross-section plasma, some key factors affecting the operational $ \beta $ and the relationship between the achievable high $ \beta $ limit and the calculated ideal $ \beta $ limit are discussed.
  • 图 1  在4206次放电中, $ {q}_{0}=0.95 $, $ {\beta }_{{\mathrm{p}}}=0.8 $时, 装置与等离子体平衡位形(a)和等离子体平衡磁面结构(b), 以及不同$ {q}_{0} $与$ {\beta }_{{\mathrm{p}}} $下的(c)压强剖面、(d) $ q $剖面和(e), (f)电流密度($ {J}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{d}}} $)剖面

    Fig. 1.  (a) Equilibrium configuration constructed and (b) mapped flux surfaces for $ {q}_{0}=0.95 $ and $ {\beta }_{{\mathrm{p}}}=0.8 $ in HL-2A discharge #4206, and (c) pressure ($ p $) profile, (d) $ q $ profile and (e), (f) current density ($ {J}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{d}}} $) profiles for different $ {q}_{0} $ and $ {\beta }_{{\mathrm{p}}} $.

    图 2  在4206次放电中, $ {\beta }_{{\mathrm{p}}}=1.2 $时, 不同$ {q}_{0} $对应的$ n=1 $扭曲模扰动位移在极向截面的投影(a), (c)及模的傅里叶分解图(b), (d) (a), (b) $ {q}_{0}=0.95 $; (c), (d) $ {q}_{0}=1.05 $. 横轴$ \left\langle{\psi }\right\rangle $代表归一化磁通

    Fig. 2.  At $ {\beta }_{{\mathrm{p}}}=1.2 $ for discharge #4206, the mode displacement vectors projected onto the poloidal plane (a), (c) and the Fourier decomposition of the normal displacement (b), (d): (a), (b) $ {q}_{0}=0.95 $; (c), (d) $ {q}_{0}=1.05 $. The horizontal axis $ \left\langle{\psi }\right\rangle $ represents the normalized magnetic flux.

    图 3  在4044次放电中, $ {q}_{0}=0.95 $时, 不同$ {q}_{0} $对应的模扰动位移在极向截面的投影(a), (c)及模的傅里叶分解图(b), (d) (a), (b) $ {\beta }_{{\mathrm{p}}}=0.8 $; (c), (d) $ {\beta }_{{\mathrm{p}}}=1.8 $

    Fig. 3.  Unstable kink mode for limiter discharge with $ {q}_{0}=0.95 $ for discharge #4044, the mode displacement vectors projected onto the poloidal plane (a), (c) and Fourier decomposition of the normal displacement (b), (d) $ : $ (a), (b) $ {\beta }_{{\mathrm{p}}}=0.8 $; (c), (d) $ {\beta }_{{\mathrm{p}}}=1.8 $

    图 4  在4044次放电中, $ {q}_{0}=1.05 $时, 不同$ {q}_{0} $对应的模扰动位移在极向截面的投影及模的傅里叶分解图 (a), (b) $ {\beta }_{{\mathrm{p}}}=0.8 $; (c), (d) $ {\beta }_{{\mathrm{p}}}=1.8 $

    Fig. 4.  For discharge #4044, mode displacement vectors projected onto the poloidal plane (a), (c) with $ {q}_{0}=1.05 $and Fourier decomposition of the normal displacement (b), (d) $ :\left({\mathrm{a}}\right), {\mathrm{ }}\left({\mathrm{b}}\right){\beta }_{{\mathrm{p}}}=0.8;{\mathrm{ }}\left({\mathrm{c}}\right), {\mathrm{ }}\left({\mathrm{d}}\right){\beta }_{{\mathrm{p}}}=1.8 $.

    图 5  在4206次放电中, $ {\beta }_{{\mathrm{p}}}=2 $时, (a), (b) $ {q}_{0}=0.95 $, (c), (d) $ {q}_{0}=1.05 $和(e), (f) $ {q}_{0}=1.3 $对应的$ n=1 $扭曲模扰动位移在极向截面的投影及模的傅里叶分解图

    Fig. 5.  At $ {\beta }_{{\mathrm{p}}}=2 $ for discharge #4206, the mode displacement vectors projected onto the poloidal plane for $ {q}_{0}=0.95 $ (a), $ 1.05 $ (c) and $ 1.3 $ (e), and Fourier decomposition of the normal displacement for $ {q}_{0}=0.95 $ (b), $ 1.05 $ (d) and $ 1.3 $ (f).

    图 6  对典型的限制器类型放电 (a) 固定$ {q}_{0}=1.05 $时, $ 1/{q}_{{\mathrm{a}}} $-$ {\beta }^{*} $平面内的扭曲稳定性; (b)不固定$ {q}_{0} $时, 使$ n=1 $模稳定的最大$ {\beta }^{*} $和$ 1/{q}_{{\mathrm{a}}} $; (c)不固定$ {q}_{0} $时, 使$ n=2 $模稳定的最大$ {\beta }^{*} $和$ 1/{q}_{{\mathrm{a}}} $

    Fig. 6.  For the typical limiter discharges: (a) Kink stabilities in $ 1/{q}_{{\mathrm{a}}} $-$ {\beta }^{*} $plane at fixed $ {q}_{0}=1.05 $; (b) $ {\beta }^{*} $ vs. $ {q}_{{\mathrm{a}}} $ at unfixed $ {q}_{0} $, here $ {\beta }^{*} $ is the maximum achievable one limited by $ n=1 $ kink; (c) $ {\beta }^{*} $ vs. $ {q}_{{\mathrm{a}}} $ at unfixed $ {q}_{0} $, here $ {\beta }^{*} $ is the maximum achievable one limited by $ n=2 $ kink. The solid lines with arrows indicate the change direction of $ {\beta }^{*} $ as $ {q}_{{\mathrm{a}}} $ increases.

    图 7  基于4044次放电的计算结果 (a), (b)归一化增长率的平方值$ {\widehat{\gamma }}_{{\mathrm{N}}}^{2} $对$ {\beta }_{{\mathrm{p}}} $和$ {\beta }_{{\mathrm{N}}} $的依赖; (c)边缘最大扰动位移随归一化比压的变化. 注意图中, $ {\beta }_{{\mathrm{p}}} $是计算的平衡位形的实际极向比压. 菱形符号表示临界点

    Fig. 7.  Calculations were based on the data of discharge #4044: (a), (b) Square value of normalized mode growth rate $ {\widehat{\gamma }}_{{\mathrm{N}}}^{2} $ as functions of $ {\beta }_{{\mathrm{p}}} $ and $ {\beta }_{{\mathrm{N}}} $; (c) maximum edge normal displacement as functions of normalized. Note that βp is the actual polar specific pressure of the calculated equilibrium configuration. The rhombus symbol represents the critical point

  • [1]

    Buttery R J, Park J M, McClenaghan J T, Weisberg D, Canik J, Ferron J, Garofalo A, Holcomb C T, Leuer J, Snyder P B, The Atom Project Team 2021 Nucl. Fusion 61 046028Google Scholar

    [2]

    SarazinY, Hillairet J, Duchateau J L, Gaudimont K, Varennes R, Garbet X, Ghendrih Ph, Guirlet R, Pégourié B, Torre A 2020 Nucl. Fusion 60 016010Google Scholar

    [3]

    Hender T C, Wesley J C, Bialek J 2007 Nucl. Fusion 47 S128Google Scholar

    [4]

    Suzuki Y, Watanabe K Y, Sakakibara S 2020 Phys. Plasmas 27 102502Google Scholar

    [5]

    Liu Y, Chapman I T, Saarelma S, Gryaznevich M P, Hender T C, Howell D F, JET-EFDA contributors 2009 Plasma Phys. Controlled Fusion 51 115005Google Scholar

    [6]

    Wolf R C, Biel W, Bock M F M de, Finken K H, Günter S, Hogeweij G M D, Jachmich S, Jakubowski M W, Jaspers R J E, Krämer-Flecken A, Koslowski H R, Lehnen M, Liang Y, Unterberg B, Varshney S K, Hellermann M von, Yu Q, Zimmermann O, Abdullaev S S, Donné A J H, Samm U, Schweer B, Tokar M, Westerhof E, the TEXTOR Team 2005 Nucl. Fusion 45 1700Google Scholar

    [7]

    Zhao K J, Lan T, Dong J Q, Yan L W, Hong W Y, Yu C X, Liu A D, Qian J, Cheng J, Yu D L, Yang Q W, Ding X T, Liu Y, Pan C H 2006 Phys. Rev. Lett. 96 255004Google Scholar

    [8]

    Chen W, Ding X T, Yang Q W, Liu Yi, Ji X Q, Zhang Y P, Zhou J, Yuan G L, Sun H J, Li W, Zhou Y, Huang Y, Dong J Q, Feng B B, Song X M, Shi Z B, Liu Z T, Song X Y, Li L C, Duan X R, Liu Y (HL-2A team) 2010 Phys. Rev. Lett. 105 185004Google Scholar

    [9]

    Zhong W L, Shen Y, Zou X L, Gao J M, Shi Z B, Dong J Q, Duan X R, Xu M, Cui Z Y, Li Y G, Ji X Q , Yu D L, Cheng J, Xiao G L, Jiang M, Yang Z C, Zhang B Y, Shi P W, Liu Z T, Song X M, Ding X T, Liu Y (HL-2A Team1) 2016 Phys. Rev. Lett. 117 045001

    [10]

    Xu M, Duan X R, Liu Yi, Song X M, Liu D Q, Wang Y Q, Lu B, Yang Q W, Zheng G Y, Ding X T, Dong J Q, Hao G Z, Zhong W L, Shi Z B, Yan L W, Zou X L, Liu Y Q, Chen W, Xiao G L, Zhang Y P, Jiang M, Hou Y M, …, the HL-2A Team 2019 Nucl. Fusion 59112017

    [11]

    Piovesan P, Igochine V, Turco F, Ryan D A, Cianciosa M R, Liu Y Q, Marrelli L, Terranova D, Wilcox R S, Wingen A, Angioni C, Bock C, Chrystal C, Classen I, Dunne M, Ferraro N M, Fischer R, Gude A, Holcomb C T, Lebchy A, Luce T C, Maraschek M, McDermott R, Odstrčil T, Paz-Soldan C, Reich M, Sertoli M, Suttrop W, Taylor N Z, Weiland M, Willensdorfer M, The ASDEX Upgrade Team, The DIII-D Team and The EUROfusion MST1 Team 2009 Plasma Phys. Controlled Fusion 59 014027

    [12]

    Igochine V, Piovesan P, Classen I G J, Dunne M, Gude A, Lauber P, Liu Y, Maraschek M, Marrelli L, Dermott R Mc, Reich M, Ryan D, Schneller M, Strumberger E, Suttrop W, Tardini G, Zohm H, The ASDEX Upgrade Team and The EUROfusion MST1 Team 2017 Nucl. Fusion 57 116027Google Scholar

    [13]

    Todd A M M, Manickam J, Okabayashi M, Chance M S, Grimm R C, Greene J M, Johnson J L 1979 Nucl. Fusion 19 743Google Scholar

    [14]

    Bernard L C, Helton F J, Moore R W, Todd T N 1983 Nucl. Fusion 23 1475.Google Scholar

    [15]

    李正吉, 陈伟, 孙爱萍, 于利明, 王卓, 陈佳乐, 许健强, 李继全, 石中兵, 蒋敏, 李永高, 何小雪, 杨曾辰, 李鉴 2024 物理学报 73 065202Google Scholar

    Li Z J, Chen W, Sun A P, Yu L M, Wang Z, Chen J L, Xu J Q, Li J Q, Shi Z B, Jiang M, Li YG, He X X, Yang Z C, Li J 2024 Acta Phys. Sin. 73 065202Google Scholar

    [16]

    朱霄龙, 陈伟, 王丰, 王正汹 2023 物理学报 72 215210Google Scholar

    Zhu X L, Chen W, Wang F, Wang Z X 2023 Acta Phys. Sin. 72 215210Google Scholar

    [17]

    Shen Y, Dong J Q, He H D, Li J, Wu N, Zhao K J, Deng W 2024 J. Phys. Soc. Jpn. 93 104501Google Scholar

    [18]

    Shen Y, Dong J Q, Pend X D, He H D, Li J X 2025 Phys. Rev. E 111 025208Google Scholar

    [19]

    Lao L L, John H St, Stambaugh R D, Kellman A G, Pfeiffer W 1985 Nucl. Fusion 25 1611

    [20]

    Gruber R, Troyon F, Berger D, Bernard L C, Rousset S, Schreiber R, Kerner W, Schneider W, Roberts K V 1981 Comput. Phys. Commun. 21 323Google Scholar

    [21]

    Bernard L C, Helton F J, Moore R W 1981 Comput. Phys. Commu. 24 377Google Scholar

    [22]

    Lao L L, Strait E J, Taylor T S, Chu M S, Ozeki T, Howl W, Stambaugh R D, Burrell K H, Chance M S, DeBoo J C, Gohil P, Greene J M, Groebner R J, Kellman A G, Mahdavi M Ali, Osborne T H, Porter G, Turnbull A D 1989 Plasma Phys. Controlled Fusion 31 509Google Scholar

    [23]

    Aydemir A Y, Kim J Y, Park B H, Seol J 2015 Phys. Plasmas 22 032304Google Scholar

    [24]

    Bondeson A, Vlad G, Léutjens H 1992 Phys. Fluids B 4 1889Google Scholar

    [25]

    Turnbull AD, Pearlstein LD, Bulmer . H, Lao LL, Haye RJ La 1999 Nucl. Fusion 39 1557

    [26]

    Kerner W, Gruber R, Troyon F 1980 Phys. Rev. Lett. 44 536Google Scholar

    [27]

    Troyon F, Gruber R, Saurenmann H, Semenzato S, Succi S 1984 Plasma Phys. Controlled Fusion 26 209Google Scholar

    [28]

    Troyon F, Gruber R 1985 Phys. Lett. 110A 29

    [29]

    Bondeson A, Liu D H, Söldner F X, Persson M, Baranov Yu F, Huysmans G T A 1999 Nucl. Fusion 39 1523Google Scholar

    [30]

    沈勇, 董家齐, 何宏达, 潘卫, 郝广周 2023 物理学报 72 035203Google Scholar

    Shen Y, Dong J Q, He H D, Pan W, Hao G Z 2023 Acta Phys. Sin. 72 035203Google Scholar

    [31]

    Liu Y, Kirk A, Keeling D L, Kogan L, Du X D, Li L, Piron L, Ryan D A, Turnbull A D 2021 Nucl. Fusion 61 116022.Google Scholar

    [32]

    Wang S, Liu Y Q, Xia G L, Song X M, Hao G Z, Li L, Li B, Zhang N, Dong G Q, Bai X, Zheng G Y 2021 Plasma Phys. Controlled Fusion 63 055019Google Scholar

    [33]

    Haye R J La, Politzer P A, Brennan D P 2008 Nucl. Fusion 48 015005Google Scholar

    [34]

    Taylor T S, John H St, Turnbull A D, Lin-Liu V R, Burrell K H, Chan V, Chu M S, Ferron J R, Lao L L, Haye R J La, Lazarus E A, Miller R L, Politzer P A, Schissel, Strait E J 1994 Plasma Phys. Controlled Fusion 36 B229Google Scholar

    [35]

    Turnbull A D, Brennan D P, Chu M S, Lao L L, Snyder P B 2005 Fusion Sci. Technol. 48 875Google Scholar

    [36]

    Li G Q, Xu X Q, Snyder P B, Turnbull A D, Xia T Y, Ma C H, Xi P W 2014 Phys. Plasmas 21 102511Google Scholar

  • [1] 徐明, 徐立清, 赵海林, 李颖颖, 钟国强, 郝保龙, 马瑞瑞, 陈伟, 刘海庆, 徐国盛, 胡建生, 万宝年, EAST团队. EAST反磁剪切qmin$\approx $2条件下磁流体力学不稳定性及内部输运垒物理实验结果简述. 物理学报, doi: 10.7498/aps.72.20230721
    [2] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究. 物理学报, doi: 10.7498/aps.72.20230620
    [3] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性. 物理学报, doi: 10.7498/aps.72.20222043
    [4] 刘迎, 陈志华, 郑纯. 黏性各向异性磁流体Kelvin-Helmholtz不稳定性: 二维数值研究. 物理学报, doi: 10.7498/aps.68.20181747
    [5] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, doi: 10.7498/aps.66.075202
    [6] 杨政权, 李成, 雷奕安. 锥形腔等离子体压缩的磁流体模拟. 物理学报, doi: 10.7498/aps.65.205201
    [7] 石秉仁, 隋国芳, 郭干城. 离子动力参数区托卡马克电阻性内扭曲模稳定性分析. 物理学报, doi: 10.7498/aps.45.801
    [8] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波. 物理学报, doi: 10.7498/aps.45.595
    [9] 匡光力, G.WAIDMANN. TEXTOR托卡马克等离子体的磁流体动力学振荡特性. 物理学报, doi: 10.7498/aps.43.1466
    [10] 黄朝松, 李钧. 等离子体交换不稳定性的模耦合理论. 物理学报, doi: 10.7498/aps.41.783
    [11] 杨维纮, 胡希伟. 柱等离子体中广义磁流体方程组的简化形式与本征模解. 物理学报, doi: 10.7498/aps.41.910
    [12] 吴汉明. 自约束球形等离子体的平衡与稳定性. 物理学报, doi: 10.7498/aps.38.1833
    [13] 徐学桥, 霍裕平. 托卡马克中宏观束-等离子体扭曲模不稳定性研究. 物理学报, doi: 10.7498/aps.35.1259
    [14] 顾永年. 小环径比锐边界等离子体的扭曲模不稳定性. 物理学报, doi: 10.7498/aps.33.554
    [15] 石秉仁. 高比压环流器等离子体位形的稳定性. 物理学报, doi: 10.7498/aps.31.1308
    [16] 王中天. 非圆截面等离子体MHD不稳定性的研究. 物理学报, doi: 10.7498/aps.30.573
    [17] 顾永年, 邱乃贤. 椭圆截面等离子体柱的扭曲不稳定性. 物理学报, doi: 10.7498/aps.29.1367
    [18] 庆承瑞, 周玉美. 环形非圆截面等离子体自由界面的磁流体平衡方程解. 物理学报, doi: 10.7498/aps.29.106
    [19] 马腾才. 带有三角变形椭圆截面的环状轴对称等离子体柱的MHD平衡与稳定性. 物理学报, doi: 10.7498/aps.28.833
    [20] 王中天. 内扭曲模稳定性的充分判据. 物理学报, doi: 10.7498/aps.28.135
计量
  • 文章访问数:  284
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-07
  • 修回日期:  2025-04-17
  • 上网日期:  2025-05-06

/

返回文章
返回