搜索

x
中国物理学会期刊

强磁场与有限温度下色味锁夸克星的唯象模型

CSTR: 32037.14.aps.74.20250451

Phenomenological model of color-flavor-locked quark star under strong magnetic fields at finite temperatures

CSTR: 32037.14.aps.74.20250451
PDF
HTML
导出引用
  • 基于准粒子模型对强磁场和有限温度下色味锁夸克物质与色味锁磁星的性质进行了讨论. 发现色味锁夸克物质的每核子自由能、有效质量、每核子熵等物理量受磁场、温度、能隙常数的影响较大, 并且强磁场、有限温度环境中色味锁夸克物质的压强会产生各向异性. 进一步研究了不同等熵阶段下的色味锁磁星的性质, 发现色味锁磁星的质量、半径等性质与磁星内部的磁场强度分布、磁场方向分布紧密相关, 磁星内部温度会随着每核子熵的增加而增大. 结论还表明色味锁夸克物质的多方指数会随着色味锁夸克星质量的增大而减少.

     

    The properties of the color-flavor-locked (CFL) quark matter under strong magnetic fields at finite temperatures within a quasiparticle model are investigated in this work. Our results indicate that CFL quark matter pressure becomes anisotropic under strong magnetic fields, while its equation of state (EOS) and equivalent quark mass are both strongly affected by temperature, energy gap constant Δ, and strong magnetic field inside the CFL quark matter. The equivalent quark mass of CFL quark matter decreases with temperature and magnetic field strength increasing, which implies an inverse magnetic catalysis phenomenon. The results also indicate that the entropy per baryon of the CFL quark matter increases with temperature rising and decreases with Δ increasing. Furthermore, the properties of CFL magnetars in different isentropic stages are studied. The star mass and radius depend primarily on the strength and orientation of magnetic fieldinside the CFL magnestars. The maximum star mass increases with entropy per baryon increasing, while the star matter temperature rises at high isentropic stage. Moreover, the polytropic index of the CFL quark matter decreases with star mass increasing.

     

    目录

    /

    返回文章
    返回