搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局域照明增强的活细胞单分子荧光-单通道膜片钳耦联技术

陶渊啸 付航 胡书新 李明 陆颖

引用本文:
Citation:

局域照明增强的活细胞单分子荧光-单通道膜片钳耦联技术

陶渊啸, 付航, 胡书新, 李明, 陆颖

Localized illumination-enhanced coupling of single-molecule fluorescence and single-channel patch-clamp in live cells

TAO Yuanxiao, FU Hang, HU Shuxin, LI Ming, LU Ying
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 通道蛋白精确调控生命活动中物质跨膜转运, 为信号传递和能量代谢等复杂功能提供了结构保障. 单分子荧光技术与单通道膜片钳技术偶联对于解析其“结构-动力学-功能”的关联至关重要. 为解决二者联用中细胞内的高荧光背景限制单分子信号采集的难点, 本研究提出了一种选择性局部激发光路, 在活细胞上表面构建可控范围的局域照明场, 实现其中单分子荧光成像与动态追踪. 基于可调照明范围和区域, 达成照明光斑与玻璃电极的亚微米级共定位, 有效获取细胞贴附式单通道电流记录, 及高信噪比的单分子荧光时间轨迹. 本工作建立了一个可用于揭示通道蛋白结构-功能耦联机制的、具有普适性的单分子水平研究框架.
    Channel proteins act as precise molecular regulators of transmembrane transport, a fundamental process essential for maintaining cellular homeostasis. These proteins dynamically modulate their functional states through conformational changes, forming the structural basis for complex physiological processes such as signal transduction and energy metabolism. Single-molecule fluorescence spectroscopy and single-channel patch-clamp electrophysiology represent two cornerstone techniques in modern biophysics: the former enables molecular-resolution analysis of structural dynamics, while the latter provides direct functional characterization of ion channel activity. Despite their complementary capabilities, integrating these techniques to simultaneously monitor protein conformational dynamics and functional states remains technically challenging, primarily due to the strong autofluorescence background inherent to single-molecule imaging in cellular environments. To address this limitation, we developed a spatially selective optical excitation system capable of localized illumination. By integrating tunable optical modules, we generated a dynamically adjustable excitation field on living cell membranes, achieving precise spatial registration between the excitation volume and the patch-clamp recording site. This system achieved submicron-scale alignment between the excitation zone and the micropipette contact area, enabling simultaneous electrophysiological recording and background-suppressed fluorescence detection within the patched membrane domain. Experimental validation demonstrated the system’s ability to perform single-molecule fluorescence imaging and trajectory analysis within designated observation areas, with imaging resolution inversely correlated with the size of the illuminated region. Optimized optical design allowed for precise excitation targeting while minimizing background illumination, resulting in high signal-to-noise ratio single-molecule imaging with significantly reduced photodamage. Integration with cell-attached patch-clamp configurations established a dual-modality platform for synchronized acquisition of single-molecule fluorescence images and single-channel recordings. Validation using mechanosensitive mPiezo1 channels confirmed the system’s compatibility with single-channel recordings, demonstrating that optical imaging induces no detectable interference with electrophysiological signal acquisition. This methodology overcomes longstanding challenges in the concurrent application of single-molecule imaging and electrophysiological techniques in live-cell environments. It establishes a novel experimental framework for investigating structure-function relationships in channel proteins and membrane-associated molecular machines through spatially coordinated optoelectronic measurements on live-cell membranes, with broad applicability in molecular biophysics and studies of transmembrane transport mechanisms.
  • 图 1  细胞膜上表面单分子荧光成像方法 (a) 细胞膜上表面单分子荧光成像光路图, 其中θρ为光路中反射镜M1调整聚焦光斑的实际参数, M1沿着固定轴(红色轴)的旋转能够对ρ进行调整; (b) 在羧基荧光素(CF)溶液中单分子成像光斑图像以及白线截面的归一化强度分布; (c) 在羧基荧光素溶液中, 聚焦光斑位置通过反射镜M1的参数调节示意图与实际效果(右下), 其中虚线框图分别为侧剖面视图(右上)与正上方俯视图(左下); (d) 聚焦成像光斑通过调整位置实现与针尖匹配, 其中针尖图像为贴图标记, 白色虚线框指示了聚焦光斑位置

    Fig. 1.  Cell membrane surface single-molecule fluorescence imaging technique: (a) Optical setup diagram for single-molecule fluorescence imaging on the upper leaflet of the cell membrane, in this diagram, θ and ρ represent the actual parameters adjusted by mirror M1 to focus the light spot, rotation of mirror M1 along the fixed axis (red-marked axis) enables precise control over the ρ parameter; (b) normalized intensity distribution of single-molecule imaging spot images and white reference line cross-section in carboxyfluorescein (CF) solution; (c) schematic diagram of focused laser spot position adjustment via mirror M1 parameters (bottom right) in CF solution, with experimental validation (bottom right). Dashed-line boxes denote: (top right) side cross-sectional view and (bottom left) top-down view; (d) alignment of the focused imaging laser spot with a probe tip via positional adjustment, where the tip image is overlaid as a reference marker, and white dashed boxes denote the focal spot location.

    图 2  细胞膜上表面单分子荧光成像 (a) 扩大成像范围光路原理示意图, 上半图中黑色虚线框放大为下半图, 下半图中的红色虚线指代物镜的前焦面; (b)—(d) 可调光阑孔径变化可以影响成像光斑的尺寸和信噪水平; (e) 不同孔径的光阑所产生的成像光斑直径; (f) 不同孔径的光阑下单分子自由扩散信号的信噪比(SNR)

    Fig. 2.  Single-molecule fluorescence imaging of the upper leaflet of the cell membrane: (a) Schematic diagram of expanded imaging field optical path design, the black dashed box in the upper panel is zoomed in as the lower panel, where the red dashed line indicates the front focal plane of the objective lens; (b)–(d) adjustment of the adjustable aperture diameter influences both the imaging spot size and the SNR; (e) variation in imaging spot diameter with aperture size; (f) SNR of single-molecule free diffusion signals under varying aperture diameters.

    图 3  荧光膜片钳联用装置设置 (a) 荧光膜片钳联用装置示意图; (b) 在聚焦光斑处实现单分子荧光成像的实例以及其数据展示; (c) 针尖与针尖荧光信号共定位以及针尖荧光信号的漂白

    Fig. 3.  Fluorescence-patch-clamp system configuration: (a) Schematic diagram of fluorescence-patch-clamp system; (b) examples of single-molecule fluorescence imaging at focused laser spots and corresponding data; (c) colocalization of the probe tip and its fluorescence signal, along with photobleaching of the tip fluorescence.

    图 4  荧光膜片钳联用装置中膜片钳系统的性能 (a) 聚焦光斑对单通道记录不产生影响, 以及对应的统计图; (b) 使用Yoda1激活mPiezo1示意图以及mPiezo1的单通道信号; (c) 通过改变压强, 使细胞膜上产生机械应力以激活mPiezo1; (d) 在未转染mPiezo1的细胞上进行压力变化测试; (e) 在转染了mPiezo1的HEK293细胞上施加不同的压力变化以不同程度地激活钳制区域的mPiezo1

    Fig. 4.  Performance evaluation of the patch-clamp system in fluorescence-patch-clamp system: (a) The focused laser spot has no measurable impact on single-channel electrophysiological recordings, as demonstrated by statistical analysis; (b) schematic of mpiezo1 activation using yoda1 and single channel signaling of mPiezo1; (c) by changing the pressure, mechanical stress is generated on the cell membrane to activate mPiezo1; (d) pressure change tests on cells not transfected with mPiezo1; (e) application of differential mechanical pressure to mPiezo1-transfected HEK293 cells to induce region-specific activation of mPiezo1.

  • [1]

    Jiang D, Banh R, El-Din T M G, Tonggu L, Lenaeus M J, Pomes R, Zheng N, Catterall W A 2021 Cell 184 5151Google Scholar

    [2]

    Yang X Z, Lin C, Chen X D, Li S Q, Li X M, Xiao B L 2022 Nature 604 377Google Scholar

    [3]

    Jentsch T J, Pusch M 2018 Physiol. Rev. 98 1493Google Scholar

    [4]

    Cui Y N, Yu M, Yao X M, Xing J J, Lin J X, Li X J 2018 Mol. Plant 11 1315Google Scholar

    [5]

    Weiss S 2000 Nat. Struct. Biol. 7 724Google Scholar

    [6]

    Smiley R D, Hammes G G 2006 Chem. Rev. 106 3080Google Scholar

    [7]

    Drapeau P, Ali D W, Buss R R, Saint-Amant L 1999 J. Neurosci. Methods 88 1Google Scholar

    [8]

    Neher E, Sakmann B 1976 Nature 260 799Google Scholar

    [9]

    Hamill O P, Marty A, Neher E, Sakmann B, Sigworth F J 1981 Pflug. Arch. Euro. J. Phys. 391 85Google Scholar

    [10]

    Mann S A, Heide J, Knott T, Airini R, Epureanu F B, Deftu A F, Deftu A T, Radu B M, Amuzescu B 2019 J. Pharmacol. Toxicol. Methods 100 1065990

    [11]

    Mason M J, Simpson A K, Mahaut-Smith M P, Robinson H P C 2005 Biophys. J. 88 739Google Scholar

    [12]

    Alcami P, Franconville R, Llano I, Marty A 2012 J. Neurosci. 32 3118Google Scholar

    [13]

    Maki B A, Cummings K A, Paganelli M A, Murthy S E, Popescu G K 2014 J Vis Exp. 88 e51629

    [14]

    Ludewig U, Pusch M, Jentsch T J 1997 Biophys. J. 73 789Google Scholar

    [15]

    Vazetdinova A, Valiullina-Rakhmatullina F, Rozov A, Evstifeev A, Khazipov R, Nasretdinov A 2022 Front. Mol. Neurosci. 15 979479Google Scholar

    [16]

    Bykova E A, Zhang X D, Chen T Y, Zheng J 2006 Nat. Struct. Mol. Biol. 13 1115Google Scholar

    [17]

    Alford R, Ogawa M, Hassan M, Gandjbakhche A H, Choyke P L, Kobayashi H 2010 Contrast Media Mol. Imaging 5 1Google Scholar

    [18]

    Yildiz A, Forkey J N, McKinney S A, Ha T, Goldman Y E, Selvin P R 2003 Science 300 2061Google Scholar

    [19]

    Gill J K, Shaw G S 2024 Chembiochem 25 e202400193

    [20]

    贾棋, 樊秦凯, 侯文清, 杨晨光, 王利邦, 王浩, 徐春华, 李明, 陆颖 2021 物理学报 70 158701Google Scholar

    Jia Q, Fan Q K, Hou W Q, Yang C G, Wang L B, Wang H, Xu C H, Li M, Lu Y 2021 Acta Phys. Sin. 70 158701Google Scholar

    [21]

    陈泽, 马建兵, 黄星榞, 贾棋, 徐春华, 张慧东, 陆颖 2018 物理学报 67 118201Google Scholar

    Chen Z, Ma J B, Huang X Y, Jia Q, Xu C H, Zhang H D, Lu Y 2018 Acta Phys. Sin. 67 118201Google Scholar

    [22]

    Li Y, Qian Z Y, Ma L, Hu S X, Nong D G, Xu C H, Ye F F, Lu Y, Wei G H, Li M 2016 Nat. Commun. 7 12906Google Scholar

    [23]

    樊秦凯, 杨晨光, 胡书新, 徐春华, 李明, 陆颖 2023 物理学报 72 147801Google Scholar

    Fan Q K, Yang C G, Hu S X, Xu C H, Li M, Lu Y 2023 Acta Phys. Sin. 72 147801Google Scholar

    [24]

    Hou W Q, Ma D F, He X L, Han W J, Ma J B, Wang H, Xu C H, Xie R P, Fan Q H, Ye F F, Hu S X, Li M, Lu Y 2021 Nano Lett. 21 485Google Scholar

    [25]

    马东飞, 侯文清, 徐春华, 赵春雨, 马建兵, 黄星榞, 贾棋, 马璐, 刘聪, 李明, 陆颖 2020 物理学报 69 038701Google Scholar

    Ma D F, Hou W Q, Xu C H, Zhao C Y, Ma J B, Huang X Y, Jia Q, Ma L, Liu C, Li M, Lu Y 2020 Acta Phys. Sin. 69 038701Google Scholar

    [26]

    Zhou L, He R, Fang P N, Li M Q, Yu H S, Wang Q M, Yu Y, Wang F B, Zhang Y, Chen A D, Peng N F, Lin Y, Zhang R, Trilling M, Broering R, Lu M J, Zhu Y, Liu S 2021 Nat. Commun. 12 128Google Scholar

    [27]

    Levring J, Terry D S, Kilic Z, Fitzgerald G, Blanchard S, Chen J 2023 Nature 616 606Google Scholar

    [28]

    Tokunaga M, Imamoto N, Sakata-Sogawa K 2008 Nature Methods 5 159Google Scholar

    [29]

    Sasmal D K, Yadav R, Lu H P 2016 J. Am. Chem. Soc. 138 8789Google Scholar

    [30]

    Sasmal D K, Lu H P 2014 J. Am. Chem. Soc. 136 12998Google Scholar

    [31]

    Hilgemann D W, Lu C C 1998 Ion Channels, Pt B 293 267

    [32]

    Couey J J, Ryan D P, Glover J T, Dreixler J C, Young J B, Houamed K M 2002 Neurosci. Lett. 329 17Google Scholar

    [33]

    Lee C H, Wallace D C, Burke P J 2024 Mitochondrial communications 2 38Google Scholar

    [34]

    Icha J, Weber M, Waters J C, Norden C 2017 Bioessays 39 1700003Google Scholar

    [35]

    Syeda R, Xu J, Dubin A E, Coste B, Mathur J, Truc H, Matzen J, Lao J, Tully D C, Engels I H, Petrassi H M, Schumacher A M, Montal M, Bandell M, Patapoutian A 2015 Elife 4 e07369Google Scholar

    [36]

    Yang Z, Zhou S H, Zhang Q Y, Song Z C, Liu W W, Sun Y, Wang M W, Fu X L, Zhu K K, Guan Y, Qi J Y, Wang X H, Sun Y N, Lu Y, Ping Y Q, Xi Y T, Teng Z X, Xu L, Xiao P, Xu Z G, Xiong W, Qin W, Yang W, Yi F, Chai R J, Yu X, Sun J P 2025 Cell Res. 35 243Google Scholar

  • [1] 薛振勇, 李向云, 侯志奇, 戚兴宇, 刘艳辉, 陈虎. 冷休克蛋白对DNA发夹稳定性影响及结合特性的单分子磁镊研究. 物理学报, doi: 10.7498/aps.74.20250504
    [2] 林丹樱, 龚振权, 黄黎琳, 聂梦娇, 于斌, 屈军乐. 用于多通道单分子定位的高精度图像配准方法. 物理学报, doi: 10.7498/aps.73.20231695
    [3] 谭金鹏, 张婉婷, 徐成, 卢雪梅, 朱文圣, 杨恺, 元冰. 基于无监督学习方法的细胞膜内单分子扩散运动分析: 胆固醇对模型膜和活细胞膜流动性的不同影响. 物理学报, doi: 10.7498/aps.73.20240915
    [4] 杨志刚, 刘颖超, 张仕青, 罗瑞鉴, 赵需谦, 连加荣, 屈军乐. 活细胞应激反应过程中线粒体和核仁微环境动力学的荧光寿命成像研究. 物理学报, doi: 10.7498/aps.73.20231990
    [5] 张健, 陈家霖, 陈笑然, 冒添逸, 沈姗姗, 何睿清. 基于自校验的单像素成像系统动态干扰去除方法. 物理学报, doi: 10.7498/aps.72.20221918
    [6] 张宇航, 薛振勇, 孙皓, 张珠伟, 陈虎. 酰基辅酶A结合蛋白去折叠动力学的单分子磁镊研究. 物理学报, doi: 10.7498/aps.72.20230533
    [7] 胡金虎, 林丹樱, 张炜, 张晨爽, 屈军乐, 于斌. 结合虚拟单像素成像解卷积的双边照明光片荧光显微技术. 物理学报, doi: 10.7498/aps.71.20211358
    [8] 田晓俊, 孔繁芳, 经士浩, 郁云杰, 张尧, 张杨, 董振超. 单分子瞬时带电态中电子-振动耦合特性的亚纳米荧光成像研究. 物理学报, doi: 10.7498/aps.71.20212003
    [9] 孙远昆, 郭良浩, 王凯程, 王少萌, 宫玉彬. 太赫兹波对钾离子通道蛋白二级结构影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20211725
    [10] 王康, 徐成, 吴晋锋, 杨恺, 元冰. 蜂毒肽与单组分脂膜相互作用的单分子研究. 物理学报, doi: 10.7498/aps.70.20210477
    [11] 张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才. 基于数字全息的血红细胞显微成像技术. 物理学报, doi: 10.7498/aps.69.20200357
    [12] 王琼, 王凯歌, 孟康康, 孙聃, 韩仝雨, 高爱华. 基于单分子成像技术研究λ-DNA分子穿越微米通道端口的电动力学特性. 物理学报, doi: 10.7498/aps.69.20200074
    [13] 徐成, 林召, 杨恺, 元冰. 蜂毒肽与二元脂膜相互作用过程的单分子运动行为. 物理学报, doi: 10.7498/aps.69.20200166
    [14] 陆越, 马建兵, 滕翠娟, 陆颖, 李明, 徐春华. 单分子动力学研究大肠杆菌单链结合蛋白与单链DNA的结合过程. 物理学报, doi: 10.7498/aps.67.20180109
    [15] 曹博智, 林瑜, 王艳伟, 杨光参. 抗生物素蛋白与DNA相互作用的单分子研究. 物理学报, doi: 10.7498/aps.65.140701
    [16] 周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜. 弹性蛋白力学特性的单分子力谱. 物理学报, doi: 10.7498/aps.65.188703
    [17] 陈丹妮, 刘磊, 于斌, 牛憨笨. HeLa细胞突起中微丝束的纳米分辨荧光成像. 物理学报, doi: 10.7498/aps.59.6948
    [18] 张兴华, 赵宝升, 缪震华, 朱香平, 刘永安, 邹 玮. 紫外单光子成像系统的研究. 物理学报, doi: 10.7498/aps.57.4238
    [19] 孙怡雯, 屈军乐, 赵羚伶, 许改霞, 丁志华, 牛憨笨. 眼底视网膜色素上皮层细胞脂褐素及氧化黑色素自体荧光寿命成像研究. 物理学报, doi: 10.7498/aps.57.772
    [20] 王琛, 王桂英, 徐至展. 全内反射荧光显微术应用于单分子荧光的纵向成像. 物理学报, doi: 10.7498/aps.53.1325
计量
  • 文章访问数:  253
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-11
  • 修回日期:  2025-04-29
  • 上网日期:  2025-05-10

/

返回文章
返回