-
提出了一种频率和相位复合可重构的超表面设计方法. 该方法在超表面单元引入N个PIN二极管, 借由其通断改变单元的谐振特性, 形成2N个可调控的反射相位, 选择适当的结构参数, 可以使2N个反射相位在不同频带内呈现出180°相位差, 综合利用频率和相位调控特性, 即可有效扩展可重构相移超表面的工作带宽. 采用该方法, 设计了一款超宽带1比特相移超表面单元, 其1比特相位的调控频段覆盖5.4—13.0 GHz, 相对带宽为82.6%, 通过引入集总电容和优化其位置, 精准改变电流分布, 实现了单元的低损耗性能. 该单元的厚度仅为0.09λ, 其具有低剖面、低成本、低损耗特点. 进一步利用该单元构造了16 × 16单元的超表面, 通过不同的阵列编码, 超表面能够产生散射可控波束和轨道角动量涡旋波, 并在超宽带范围内实现了10 dB以上的雷达散射截面减缩效果, 展现出动态灵活的波束调控和低散射性能.In this paper, a design method is presented for frequency-phase composite reconfigurable metasurfaces. N PIN diodes are introduced into the metasurface unit. The on-off states of these PIN diodes regulate the resonance characteristics of the unit, constructing 2N switchable reflection phase states. After optimizing structural parameters, these reflection phase curves show that there is a 180° phase difference between different frequency bands. By regulating frequency and phase regulation, the operational bandwidth of reconfigurable phase-shifting metasurface is effectively expanded. Based on this method, an ultra-wideband 1-bit phase-shifting metasurface unit is designed. Its 1-bit phase regulation band covers 5.4—13.0 GHz, with a relative bandwidth of 82.6%. Lumped capacitors are adopted and their positions are optimized to precisely adjust current distribution, enabling low-loss performance of the unit. The unit with a thickness of only 0.09 λ features low profile, low cost, and low loss. A 16 × 16 unit array is further constructed. Through coding regulation, the metasurface can generate scattering-controllable beams and orbital angular momentum vortex waves. Experimental results show that the metasurface can achieve a radar cross section reduction of over 10 dB in the ultra-wideband range, demonstrating dynamic beam steering capability and high-efficiency low-scattering performance. This design offers new insights into applying reconfigurable metasurfaces to broadband communication, radar stealth, and intelligent electromagnetic environment regulation.
-
Keywords:
- reconfigurable metasurface /
- ultra-wideband /
- frequency reconfigurable /
- low radar cross section
-
图 5 10.5 GHz时单元反射幅度分析 (a) 不含电容单元的表面电流分布; (b) 不含电容单元的反射幅度; (c) 含电容单元的表面电流分布; (d) 含电容单元的反射幅度; (e) 电容位置变化时的表面电流分布; (f) 电容位置变化时的反射幅度
Fig. 5. Reflection amplitude Analysis of the element at 10.5 GHz: (a) Surface current distribution and (b) reflection amplitude of the element without capacitors; (c) surface current distribution and (d) reflection amplitude of the element with capacitors; (e) surface current distribution and (f) reflection amplitude of the element with different capacitors locations.
图 10 超表面在不同频率时产生OAM涡旋波及其相位编码排布 (a) 6.9 GHz, θ = 15°; (b) 9.0 GHz, θ = 15°; (c) 11.2 GHz, θ = 15°; (d) 12.2 GHz, θ = 15°; (e) 6.9 GHz, θ = 30°; (f) 9.0 GHz, θ = 30°; (g) 11.2 GHz, θ = 30°; (h) 12.2 GHz, θ = 30°
Fig. 10. OAM vortex waves generated by the metasurface at different frequencies: (a) 6.9 GHz, θ = 15°; (b) 9.0 GHz, θ = 15°; (c) 11.2 GHz, θ = 15°; (d) 12.2 GHz, θ = 15°; (e) 6.9 GHz, θ = 30°; (b) 9.0 GHz, θ = 30°; (c) 11.2 GHz, θ = 30°; (d) 12.2 GHz, θ = 30°.
表 1 本文设计的可重构超表面单元与已有文献比较
Table 1. Comparison of in this work and metasurface cells in previous work.
-
[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[2] Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. -Rev. Sec. Phys. Lett. 634 1
[3] Chen Q, Yang S L, Bai J J, Fu Y Q 2017 IEEE Trans. Antennas Propag. 65 4897
Google Scholar
[4] Xing Z Y, Yang F, Yang P, Yang J H 2022 IEEE Antennas Wirel. Propag. Lett. 21 1659
Google Scholar
[5] Li B, Liu X B, Shi H Y, Yang C, Chen Q, Zhang A X 2018 IEEE Access 6 78839
Google Scholar
[6] Huang C X, Zhang J J, Cheng Q, Cui T J 2021 Adv. Funct. Mater. 31 2103379
Google Scholar
[7] Xu J, Yang K X, Tian S, Zhao J P 2024 IEEE Antennas Wirel. Propag. Lett. 23 4658
Google Scholar
[8] Zhao S H, Zhang S, Xue H, Li Y C, Zhang K Y, Liu H X, Li L 2024 IEEE Antennas Wirel. Propag. Lett. 23 985
Google Scholar
[9] Li Z H, Li S J, He C Y, Wu Y H, Hu L Q, Zhang Z Y, Li T, Yang H H 2024 Adv. Phys. Res. 6 2400176
[10] Xu P, Tian H W, Jiang W X, Chen Z Z, Cao T, Qiu C W, Cui T J 2021 Adv. Opt. Mater. 9 2100159
Google Scholar
[11] Yang H H, Li T, Liao J W, Gao K, Li Q, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 4069
Google Scholar
[12] Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325
Google Scholar
[13] Yang H H, Li T, Jidi L, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075
Google Scholar
[14] Li T, Yang H H, Li Q, Zhang C, Han J F, Cong L L, Cao X Y, Gao J 2019 Opt. Mater. Express 9 1161
Google Scholar
[15] Yang H H, Li T, Gao K, Guo Z X, Li Q, Li S J, Cao X Y 2024 Microwave Opt. Technol. Lett. 66 33965
[16] Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Guo Z X, Li T, Liu X B, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 2046
Google Scholar
[17] Zhang Z Y, Cao X Y, Yang H H, Li T, Li S J, Ji K F 2023 J. Phys. D: Appl. Phys. 56 015103
Google Scholar
[18] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl. 3 e218
Google Scholar
[19] Pitilakis A, Seckel M, Tasolamprou A C, Liu F, Deltsidis A, Manessis D, Ostmann A, Kantartzis N V, Liaskos C, Soukoulis C M, Tretyakov S A, Kafesaki M, Tsilipakos O 2022 Phys. Rev. Appl. 17 064060
Google Scholar
[20] Yin T, Ren J, Chen Y J, Xu K D, Yin Y Z 2024 IEEE Trans. Antennas Propag. 72 6789
Google Scholar
[21] Li W H, Qiu T S, Wang J F, Zheng L, Jing Y, Jia Y X, Wang H, Han Y J, Qu S B 2021 IEEE Trans. Antennas Propag. 69 296
Google Scholar
[22] Wang P, Wang Y, Yan Z M, Zhou H C 2022 Chin. Phys. B 31 124201
Google Scholar
[23] Yu H C, Cao X Y, Gao J, Yang H H, Jidi L, Han J F, Li T 2018 Opt. Mater. Express 8 3373
Google Scholar
[24] Wang H L, Zhang Y K, Cheng Y T, Zhang T Y, Zheng S, Cui T J, Ma H F 2025 Laser Photonics Rev. 19 202500057
[25] Liu Y, Zhang W B, Jia Y T, Wu A Q 2021 IEEE Trans. Antennas Propag. 69 572
Google Scholar
[26] Cao W W, Zhang J W, Dai J Y, Wu L J, Yang H Q, Zhang Z, Li H D, Cheng Q 2025 Chin. Opt. Lett. 23 023603
Google Scholar
[27] Zhou S G, Zhao G, Xu H, Luo C W, Sun J Q, Chen G T, Jiao Y C 2022 IEEE Antennas Wirel. Propag. Lett. 21 566
Google Scholar
[28] Li T, Yang H H, Li Q, Tian J H, Gao K, Cong L L, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 1206
Google Scholar
[29] 卢颖娟, 程强, 王思然, 李会东, 戴俊彦, 张珍, 罗将 2025 光学学报 2 0401001
Lu Y J, Cheng Q, Wang S R, Li H D, Dai J Y, Zhang Z, Luo J 2025 Acta Opt. Sin. 2 0401001
[30] Li P, Yu H, Su J X, Song L W, Guo Q X, Li Z R 2023 IEEE Trans. Antennas Propag. 71 621
Google Scholar
[31] Shi H Y, Liu R, Zhang Z Y, Chen X M, Wang L Y, Yi J J, Liu H W, Zhang A X 2024 IEEE Antennas Wirel. Propag. Lett. 23 4613
Google Scholar
[32] Lan C W, Gao Y T, Gao Z H, Wang H Y, Bi K, Lei M, Zhao G N 2025 Chin. Phys. Lett. 42 056303
Google Scholar
[33] Zhang Z Y, Zhou Y L, Li S J, Tian J H, Cong L L, Yang H H, Cao X Y 2024 ACS Appl. Mater. Interfaces 16 65635
Google Scholar
[34] Zheng Y J, Chen Q, Ding L, Yuan F, Fu Y Q 2023 J. Syst. Eng. Electron. 34 1473
Google Scholar
[35] Li Y X, Zhu R C, Sui S, Cui Y N, Jia Y X, Han Y J, Fu X M, Feng C Q, Qu S B, Wang J F 2025 Nanophotonics 14 959
Google Scholar
[36] Guo Q X, Hao F S, Qu M J, Su J X, Li Z R 2024 IEEE Antennas Wirel. Propag. Lett. 23 1241
Google Scholar
[37] Chen Q, Chen Y, Yuan F, Bai J J, Zheng Y J, Fu Y Q 2023 Chin. J. Radio Sci. 38 989
计量
- 文章访问数: 353
- PDF下载量: 8
- 被引次数: 0