搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于频率可重构的超宽带1比特相移超表面

廖嘉伟 杨欢欢 李桐 季轲峰 张芷昀 吴天昊 邹靖 孙代飞

引用本文:
Citation:

一种基于频率可重构的超宽带1比特相移超表面

廖嘉伟, 杨欢欢, 李桐, 季轲峰, 张芷昀, 吴天昊, 邹靖, 孙代飞

A frequency-reconfigurable ultra-wideband 1-bit phase-shifting metasurface

LIAO Jiawei, YANG Huanhuan, LI Tong, JI Kefeng, ZHANG Zhiyun, WU Tianhao, ZOU Jing, SUN Daifei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 提出了一种频率和相位复合可重构的超表面设计方法. 该方法在超表面单元引入N个PIN二极管, 借由其通断改变单元的谐振特性, 形成2N个可调控的反射相位, 选择适当的结构参数, 可以使2N个反射相位在不同频带内呈现出180°相位差, 综合利用频率和相位调控特性, 即可有效扩展可重构相移超表面的工作带宽. 采用该方法, 设计了一款超宽带1比特相移超表面单元, 其1比特相位的调控频段覆盖5.4—13.0 GHz, 相对带宽为82.6%, 通过引入集总电容和优化其位置, 精准改变电流分布, 实现了单元的低损耗性能. 该单元的厚度仅为0.09λ, 其具有低剖面、低成本、低损耗特点. 进一步利用该单元构造了16 × 16单元的超表面, 通过不同的阵列编码, 超表面能够产生散射可控波束和轨道角动量涡旋波, 并在超宽带范围内实现了10 dB以上的雷达散射截面减缩效果, 展现出动态灵活的波束调控和低散射性能.
    In this paper, a design method is presented for frequency-phase composite reconfigurable metasurfaces. N PIN diodes are introduced into the metasurface unit. The on-off states of these PIN diodes regulate the resonance characteristics of the unit, constructing 2N switchable reflection phase states. After optimizing structural parameters, these reflection phase curves show that there is a 180° phase difference between different frequency bands. By regulating frequency and phase regulation, the operational bandwidth of reconfigurable phase-shifting metasurface is effectively expanded. Based on this method, an ultra-wideband 1-bit phase-shifting metasurface unit is designed. Its 1-bit phase regulation band covers 5.4—13.0 GHz, with a relative bandwidth of 82.6%. Lumped capacitors are adopted and their positions are optimized to precisely adjust current distribution, enabling low-loss performance of the unit. The unit with a thickness of only 0.09 λ features low profile, low cost, and low loss. A 16 × 16 unit array is further constructed. Through coding regulation, the metasurface can generate scattering-controllable beams and orbital angular momentum vortex waves. Experimental results show that the metasurface can achieve a radar cross section reduction of over 10 dB in the ultra-wideband range, demonstrating dynamic beam steering capability and high-efficiency low-scattering performance. This design offers new insights into applying reconfigurable metasurfaces to broadband communication, radar stealth, and intelligent electromagnetic environment regulation.
  • 图 1  矩形贴片超表面单元 (a) 单元侧视图; (b) 单元不同金属贴片尺寸的反射相位

    Fig. 1.  Metasurface element with rectangular patch: (a) Isometric view; (b) reflection phases of the element with different patch sizes.

    图 2  超表面基本单元演变过程 (a) 1比特单元; (b) 频率可重构1比特单元; (c) 低损耗频率可重构1比特单元

    Fig. 2.  Design process of the metasurface element: (a) 1 bit element; (b) frequency-reconfigurable 1 bit element; (c) low-loss and frequency-reconfigurable 1 bit element.

    图 3  单元结构示意图 (a) 单元透视图; (b) 单元俯视图; (c) 单元仰视图

    Fig. 3.  Structure of the metasurface element: (a) Isometric view; (b) top view; (c) bottom view.

    图 4  偏置线对单元反射性能的影响 (a) 幅度; (b) 相位

    Fig. 4.  Influence of biasing circuit on reflection performance: (a) Reflection amplitude; (b) reflection phase.

    图 5  10.5 GHz时单元反射幅度分析 (a) 不含电容单元的表面电流分布; (b) 不含电容单元的反射幅度; (c) 含电容单元的表面电流分布; (d) 含电容单元的反射幅度; (e) 电容位置变化时的表面电流分布; (f) 电容位置变化时的反射幅度

    Fig. 5.  Reflection amplitude Analysis of the element at 10.5 GHz: (a) Surface current distribution and (b) reflection amplitude of the element without capacitors; (c) surface current distribution and (d) reflection amplitude of the element with capacitors; (e) surface current distribution and (f) reflection amplitude of the element with different capacitors locations.

    图 6  单元反射性能曲线 (a) “11”和“10”状态; (b) “00”和10”状态; (c) “00”和01”状态; (d) “11”和“01”状态

    Fig. 6.  Reflection characteristic of the element: (a) States of “11” and “10”; (b) states of “00” and “10”; (c) states of “00” and “01”; (d) states of “11” and “01”.

    图 7  超表面在9 GHz时不同的相位编码排布及散射方向图 (a) 单波束; (b) 双波束; (c) 三波束; (d) 漫散射

    Fig. 7.  Different scattering patterns of the metasurface at 9 GHz: (a) Single beam; (b) double beam; (c) triple beam; (d) diffuse scattering.

    图 8  散射方向图分析与单站RCS对比 (a) 散射方向图; (b) RCS对比

    Fig. 8.  Scattering pattern and monostatic RCS comparison: (a) Scattering pattern; (b) RCS.

    图 9  超表面在棋盘相位编码排布时的散射方向图 (a) 6.9 GHz; (b) 9.0 GHz; (c) 11.2 GHz; (d) 12.2 GHz

    Fig. 9.  The scattering pattern of the metasurface with checkerboard coding configuration: (a) 6.9 GHz; (b) 9.0 GHz; (c) 11.2 GHz; (d) 12.2 GHz.

    图 10  超表面在不同频率时产生OAM涡旋波及其相位编码排布 (a) 6.9 GHz, θ = 15°; (b) 9.0 GHz, θ = 15°; (c) 11.2 GHz, θ = 15°; (d) 12.2 GHz, θ = 15°; (e) 6.9 GHz, θ = 30°; (f) 9.0 GHz, θ = 30°; (g) 11.2 GHz, θ = 30°; (h) 12.2 GHz, θ = 30°

    Fig. 10.  OAM vortex waves generated by the metasurface at different frequencies: (a) 6.9 GHz, θ = 15°; (b) 9.0 GHz, θ = 15°; (c) 11.2 GHz, θ = 15°; (d) 12.2 GHz, θ = 15°; (e) 6.9 GHz, θ = 30°; (b) 9.0 GHz, θ = 30°; (c) 11.2 GHz, θ = 30°; (d) 12.2 GHz, θ = 30°.

    图 11  超表面在6.9 GHz处OAM散射波束俯仰角θ = 30°时的相位分布及模式纯度分析 (a) l = 1的相位分布; (b) l = –1的相位分布; (c) l = 1的模式纯度

    Fig. 11.  Phase and mode purity analysis of OAM vortex waves at 6.9 GHz (θ = 30°): (a) Phase distribution for l = 1; (b) phase distribution for l = –1; (c) mode purity for l = 1.

    图 12  同尺寸金属板与超表面在各频带内产生不同OAM涡旋波时的RCS (a) 波束θ = 15°; (b) 波束θ = 30°

    Fig. 12.  Monostatic RCS of the metal plate and the metasurface in the state of generating different OAM vortex waves: (a) θ = 15°; (b) θ = 30°.

    图 13  8 × 8超表面样件及测试 (a) 样件正面; (b) 样件背面; (c) 微波暗室测试示意图

    Fig. 13.  Picture and test of the metasurface with 8 × 8 elements: (a) Top view; (b) back view; (c) test in the anechoic chamber.

    图 14  仿真与测试的超表面RCS减缩效果 (a) 棋盘相位编码排布; (b) 左右对称相位编码排布

    Fig. 14.  Simulated and measured monostatic RCS reduction of the metasurface: (a) Chessboard coding configuration; (b) symmetrtic coding configuration.

    图 15  仿真与测试的超表面yoz面散射方向图 (a) 单波束; (b) 双波束; (c) 三波束

    Fig. 15.  Simulated and measured scattering pattern of the metasurface at yoz plane: (a) Single beam; (b) double beam; (c) triple beam.

    表 1  本文设计的可重构超表面单元与已有文献比较

    Table 1.  Comparison of in this work and metasurface cells in previous work.

    文献 调控
    类型
    调控频
    带/GHz
    相对带
    宽/%
    射频介
    质层数
    厚度 单元大小
    [25] 相位 12.9—16.5 23.8 2 0.12λ 0.47λ×0.47λ
    [26] 相位 6.75—11.25 50 1 0.066λ 0.30λ×0.30λ
    [27] 相位 7.3—13.9 62.3 2 0.14λ 0.35λ×0.35λ
    [28] 相位 5.2—9.4 57.5 2 0.13λ 0.44λ×0.44λ
    [29] 相位 2.75—6.0 74.3 2 0.17λ 0.27λ×0.27λ
    本文 相位+
    频率
    5.4—13.0 82.6 1 0.09λ 0.38λ×0.38λ
    下载: 导出CSV
  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. -Rev. Sec. Phys. Lett. 634 1

    [3]

    Chen Q, Yang S L, Bai J J, Fu Y Q 2017 IEEE Trans. Antennas Propag. 65 4897Google Scholar

    [4]

    Xing Z Y, Yang F, Yang P, Yang J H 2022 IEEE Antennas Wirel. Propag. Lett. 21 1659Google Scholar

    [5]

    Li B, Liu X B, Shi H Y, Yang C, Chen Q, Zhang A X 2018 IEEE Access 6 78839Google Scholar

    [6]

    Huang C X, Zhang J J, Cheng Q, Cui T J 2021 Adv. Funct. Mater. 31 2103379Google Scholar

    [7]

    Xu J, Yang K X, Tian S, Zhao J P 2024 IEEE Antennas Wirel. Propag. Lett. 23 4658Google Scholar

    [8]

    Zhao S H, Zhang S, Xue H, Li Y C, Zhang K Y, Liu H X, Li L 2024 IEEE Antennas Wirel. Propag. Lett. 23 985Google Scholar

    [9]

    Li Z H, Li S J, He C Y, Wu Y H, Hu L Q, Zhang Z Y, Li T, Yang H H 2024 Adv. Phys. Res. 6 2400176

    [10]

    Xu P, Tian H W, Jiang W X, Chen Z Z, Cao T, Qiu C W, Cui T J 2021 Adv. Opt. Mater. 9 2100159Google Scholar

    [11]

    Yang H H, Li T, Liao J W, Gao K, Li Q, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 4069Google Scholar

    [12]

    Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325Google Scholar

    [13]

    Yang H H, Li T, Jidi L, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075Google Scholar

    [14]

    Li T, Yang H H, Li Q, Zhang C, Han J F, Cong L L, Cao X Y, Gao J 2019 Opt. Mater. Express 9 1161Google Scholar

    [15]

    Yang H H, Li T, Gao K, Guo Z X, Li Q, Li S J, Cao X Y 2024 Microwave Opt. Technol. Lett. 66 33965

    [16]

    Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Guo Z X, Li T, Liu X B, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 2046Google Scholar

    [17]

    Zhang Z Y, Cao X Y, Yang H H, Li T, Li S J, Ji K F 2023 J. Phys. D: Appl. Phys. 56 015103Google Scholar

    [18]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl. 3 e218Google Scholar

    [19]

    Pitilakis A, Seckel M, Tasolamprou A C, Liu F, Deltsidis A, Manessis D, Ostmann A, Kantartzis N V, Liaskos C, Soukoulis C M, Tretyakov S A, Kafesaki M, Tsilipakos O 2022 Phys. Rev. Appl. 17 064060Google Scholar

    [20]

    Yin T, Ren J, Chen Y J, Xu K D, Yin Y Z 2024 IEEE Trans. Antennas Propag. 72 6789Google Scholar

    [21]

    Li W H, Qiu T S, Wang J F, Zheng L, Jing Y, Jia Y X, Wang H, Han Y J, Qu S B 2021 IEEE Trans. Antennas Propag. 69 296Google Scholar

    [22]

    Wang P, Wang Y, Yan Z M, Zhou H C 2022 Chin. Phys. B 31 124201Google Scholar

    [23]

    Yu H C, Cao X Y, Gao J, Yang H H, Jidi L, Han J F, Li T 2018 Opt. Mater. Express 8 3373Google Scholar

    [24]

    Wang H L, Zhang Y K, Cheng Y T, Zhang T Y, Zheng S, Cui T J, Ma H F 2025 Laser Photonics Rev. 19 202500057

    [25]

    Liu Y, Zhang W B, Jia Y T, Wu A Q 2021 IEEE Trans. Antennas Propag. 69 572Google Scholar

    [26]

    Cao W W, Zhang J W, Dai J Y, Wu L J, Yang H Q, Zhang Z, Li H D, Cheng Q 2025 Chin. Opt. Lett. 23 023603Google Scholar

    [27]

    Zhou S G, Zhao G, Xu H, Luo C W, Sun J Q, Chen G T, Jiao Y C 2022 IEEE Antennas Wirel. Propag. Lett. 21 566Google Scholar

    [28]

    Li T, Yang H H, Li Q, Tian J H, Gao K, Cong L L, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 1206Google Scholar

    [29]

    卢颖娟, 程强, 王思然, 李会东, 戴俊彦, 张珍, 罗将 2025 光学学报 2 0401001

    Lu Y J, Cheng Q, Wang S R, Li H D, Dai J Y, Zhang Z, Luo J 2025 Acta Opt. Sin. 2 0401001

    [30]

    Li P, Yu H, Su J X, Song L W, Guo Q X, Li Z R 2023 IEEE Trans. Antennas Propag. 71 621Google Scholar

    [31]

    Shi H Y, Liu R, Zhang Z Y, Chen X M, Wang L Y, Yi J J, Liu H W, Zhang A X 2024 IEEE Antennas Wirel. Propag. Lett. 23 4613Google Scholar

    [32]

    Lan C W, Gao Y T, Gao Z H, Wang H Y, Bi K, Lei M, Zhao G N 2025 Chin. Phys. Lett. 42 056303Google Scholar

    [33]

    Zhang Z Y, Zhou Y L, Li S J, Tian J H, Cong L L, Yang H H, Cao X Y 2024 ACS Appl. Mater. Interfaces 16 65635Google Scholar

    [34]

    Zheng Y J, Chen Q, Ding L, Yuan F, Fu Y Q 2023 J. Syst. Eng. Electron. 34 1473Google Scholar

    [35]

    Li Y X, Zhu R C, Sui S, Cui Y N, Jia Y X, Han Y J, Fu X M, Feng C Q, Qu S B, Wang J F 2025 Nanophotonics 14 959Google Scholar

    [36]

    Guo Q X, Hao F S, Qu M J, Su J X, Li Z R 2024 IEEE Antennas Wirel. Propag. Lett. 23 1241Google Scholar

    [37]

    Chen Q, Chen Y, Yuan F, Bai J J, Zheng Y J, Fu Y Q 2023 Chin. J. Radio Sci. 38 989

  • [1] 吴天昊, 杨欢欢, 李桐, 季轲峰, 张芷昀, 廖嘉伟, 邹靖. 基于幅相调控特性的双极化低散射超表面天线. 物理学报, doi: 10.7498/aps.74.20250838
    [2] 杨国, 施鸿强, 黎小聪, 肖如奇, 齐世山, 吴文. 大频率比的毫米波频率可重构滤波天线. 物理学报, doi: 10.7498/aps.74.20241494
    [3] 李桐, 杨欢欢, 李奇, 廖嘉伟, 高坤, 季轲峰, 曹祥玉. 基于共享孔径技术的低RCS电磁超构表面天线设计. 物理学报, doi: 10.7498/aps.73.20240142
    [4] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体. 物理学报, doi: 10.7498/aps.73.20231365
    [5] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, doi: 10.7498/aps.71.20211254
    [6] 冯奎胜, 李娜, 杨欢欢. 电磁超构表面与天线结构一体化的低RCS阵列. 物理学报, doi: 10.7498/aps.70.20210746
    [7] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐. 一种编码式低雷达散射截面超表面天线阵列设计. 物理学报, doi: 10.7498/aps.69.20200978
    [8] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器. 物理学报, doi: 10.7498/aps.68.20181615
    [9] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, doi: 10.7498/aps.68.20190267
    [10] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, doi: 10.7498/aps.66.064203
    [11] 郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜. 覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏. 物理学报, doi: 10.7498/aps.64.024219
    [12] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, doi: 10.7498/aps.64.178101
    [13] 肖夏, 宋航, 王梁, 王宗杰, 路红. 早期乳腺肿瘤的超宽带微波稳健波束形成成像检测系统. 物理学报, doi: 10.7498/aps.63.194102
    [14] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, doi: 10.7498/aps.63.224102
    [15] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, doi: 10.7498/aps.62.237801
    [16] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究. 物理学报, doi: 10.7498/aps.62.244202
    [17] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号. 物理学报, doi: 10.7498/aps.62.064209
    [18] 宫蕴瑞, 何迪, 何晨. 混沌超宽带系统的广义负熵盲检测机理研究. 物理学报, doi: 10.7498/aps.61.120502
    [19] 杨锐, 谢拥军, 胡海鹏, 王瑞, 满明远, 吴召海. 超宽带异向介质平面倒F天线. 物理学报, doi: 10.7498/aps.59.3173
    [20] 王 鹏, 赵 环, 赵研英, 王兆华, 田金荣, 李德华, 魏志义. 用SPIDER法测量超宽带钛宝石振荡器的激光脉宽研究. 物理学报, doi: 10.7498/aps.56.224
计量
  • 文章访问数:  353
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-15
  • 修回日期:  2025-07-08
  • 上网日期:  2025-07-24

/

返回文章
返回