搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

mHz—MHz频段低噪声高增益平衡光电探测器实验研究

卢波 史少平 高丽 王璇 林艺松 田龙 李卫 王雅君 郑耀辉

引用本文:
Citation:

mHz—MHz频段低噪声高增益平衡光电探测器实验研究

卢波, 史少平, 高丽, 王璇, 林艺松, 田龙, 李卫, 王雅君, 郑耀辉
cstr: 32037.14.aps.74.20250640

Experimental research on low-noise and high-gain balanced detectors in mHz−MHz band

LU Bo, SHI Shaoping, GAO Li, WANG Xuan, LIN Yisong, TIAN Long, LI Wei, WANG Yajun, ZHENG Yaohui
cstr: 32037.14.aps.74.20250640
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 平衡光电探测器作为一种检测量子态噪声起伏通用技术的核心关键器件, 其性能参数在近直流的宽频带范围内(mHz—MHz)常受限于电子学噪声与电学增益的相互制约. 针对1 mHz—1 Hz极低频段, 为满足未来量子增强引力波探测计划中对量子压缩光源探测和评估等方面的需求, 本研究基于一种可调节阻抗匹配网络与两级差分放大的设计架构, 使用差分微调电路与可调偏置电压协同补偿方案, 优化光电二极管的非线性响应补偿机制, 在分析频段500 Hz处实现共模抑制比>75 dB. 实验结果表明, 在小于1 Hz的频段内, 探测器的电子学噪声优于3.5 × 10–5 V/Hz1/2, 满足空间引力波探测计划对于激光强度噪声的要求(1 × 10–4 V/Hz1/2); 同时当入射的本底探测光功率为4 mW时, 本平衡光电探测器可实现增益20 dB@1 mHz—1 MHz, 满足高指标压缩光源的高效探测需求, 为下一代空间引力波探测以及极低频段压缩态光场的探测提供了关键器件的解决方案.
    Balanced detector is a fundamental component for the accurately measuring quantum state fluctuations, especially quantum noise, which is crucial for future quantum-enhanced interferometric gravitational wave detectors utilizing squeezed light. By using a transimpedance amplifier (TIA) model core for balanced detection, a detailed theoretical and practical analysis is conducted on the electronic factors that affect the performance of the detector in the target ultra-low-frequency range. The TIA stage is meticulously designed using a high-performance integrated operational amplifier characterized by low offset voltage drift. In order to ensure the critical gain stability for ultra-low-frequency operation, this design adopts low temperature-drift metal foil resistors. Subsequent voltage amplification is achieved using a noninverting amplifier configuration to attain the necessary high electrical gain, while strictly managing overall electronic noise. By recognizing the criticality of common-mode noise rejection for quantum noise measurements, the photodiode (PD) nonlinear response compensation mechanism is analyzed and optimized. This is achieved through the innovative implementation of a differential fine-tuning circuit (DFTC) coupled with an adjustable bias voltage (ABV) compensation scheme. Experimental validation confirms the effectiveness of the optimized design. The compensation scheme utilizing DFTC and ABV successfully achieves a high common mode rejection ratio (CMRR) exceeding 75 dB@500 Hz. Crucially, the detector achieves an electronic noise spectral density of 3.5 × 10–5 V/Hz1/2 within the 1 mHz–1 Hz band, exceeding the requirements for laser intensity noise (1 × 10–4 V/Hz1/2) in space-based gravitational wave detection. Furthermore, the detector demonstrates high gain capability and bandwidth: with an incident detection light power of 4 mW, the balanced detector achieves a gain of 20 dB maintained in a wide frequency range from 1 mHz to 1 MHz. This work presents the design, detailed analysis, and experimental realization of optimized balanced detectors specifically tailored for high-sensitivity measurements in the millihertz gravitational wave frequency band. The achieved low electronic noise base below 1 Hz and high CMRR meet the key requirements for future space-based gravitational wave detectors to detect squeezed states of light. This optimized balanced detector provides important components and technical support for the next-generation space-based gravitational wave detection and millihertz squeezed light characterization.
      通信作者: 史少平, ssp4208@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62035015, 62225504, 62027821, U22A6003, 12304399, 12174234, 12274275, 62375162)、山西省基础研究计划(批准号: 202303021212003, 202303021224006)和山西省重点研发计划(批准号: 202302150101015)资助的课题.
      Corresponding author: SHI Shaoping, ssp4208@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62035015, 62225504, 62027821, U22A6003, 12304399, 12174234, 12274275, 62375162), the Fundamental Research Program of Shanxi Province, China (Grant Nos. 202303021212003, 202303021224006), and the Key R&D Program of Shanxi Province, China (Grant No. 202302150101015).
    [1]

    Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R X, Adya V B, Affeldt C 2020 Phys. Rev. Lett. 125 101102Google Scholar

    [2]

    Vitale S 2021 Science 372 eabc7397Google Scholar

    [3]

    Abbott T D, Abraham S, Acernese F, et al. 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [4]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [5]

    王在渊, 王洁浩, 李宇航, 柳强 2023 物理学报 72 054205Google Scholar

    Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 054205Google Scholar

    [6]

    Jia W X, Xu V, Kuns K, et al. 2024 Science 385 1318Google Scholar

    [7]

    McCuller L, Whittle C, Ganapathy D, Komori K, Tse K, Fernandez-Galiana A, Barsotti L, Fritschel P, MacInnis M, Matichard F, Mason K, Mavalvala N, Mittleman R, Yu H C, Zucker M E, Evans M 2020 Phys. Rev. Lett. 124 171102Google Scholar

    [8]

    Aasi J, Abadie J, Abbott B P, Abbott R, et al. 2013 Nat. Photonics 7 613Google Scholar

    [9]

    Acernese F, Agathos M, Aiello L, et al. 2019 Phys. Rev. Lett. 123 231108Google Scholar

    [10]

    Mikhail K, Ma Y Q, Chen Y B, Schnabel R 2019 Light: Sci. Appl. 8 118Google Scholar

    [11]

    Harry G M, LIGO Scientific Collaboration 2010 Classical Quantum Gravity 27 084006Google Scholar

    [12]

    Matichard F, Lantz B, Mittleman R, et al. 2015 Classical Quantum Gravity 32 185003Google Scholar

    [13]

    Thorne K S, Winstein C J 1999 Phys. Rev. D 60 082001Google Scholar

    [14]

    Acernese F, Agathos M, Agatsuma K, et al. 2014 Classical Quantum Gravity 32 024001Google Scholar

    [15]

    Luo J, Chen L S, Duan H Z, Gong Y G, Hu S C, Ji J H, Liu Q, Mei J W, Milyukov V, Sazhin M, Shao C G, Toth V T, Tu H B, Wang Y M, Wang Y, Yeh H C, Zhan M S, Zhang Y H, Zharov V, Zhou Z B 2016 Classical Quantum Gravity 33 035010Google Scholar

    [16]

    Jennrich O 2009 Classical Quantum Gravity 26 153001Google Scholar

    [17]

    Luo Z R, Wang Y, Wu Y L, Hu W R, Jin G 2021 Prog. Theor. Exp. Phys. 2021 05A108Google Scholar

    [18]

    Luo Z R, Guo Z K, Jin G, Wu Y L, Hu W R 2020 Results Phys. 16 102918Google Scholar

    [19]

    罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar

    Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech. 43 415Google Scholar

    [20]

    Badaracco F, Rossi C D, Fiori I, Harms J, Miyo K, Paoletti F, Tanaka T, Washimi T, Yokozawa T 2021 Phys. Rev. D 104 042006Google Scholar

    [21]

    Stefszky M S, Mow-Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, McClelland D E 2012 Classical Quantum Gravity 29 145015Google Scholar

    [22]

    尚鑫, 李番, 马正磊, 黄天时, 党昊, 李卫, 尹王保, 田龙, 陈力荣, 郑耀辉 2025 物理学报 74 059501Google Scholar

    Shang X, LI F, Ma Z L, Huang T S, Dang H, LI W, Yin W B, Tian L, Cheng L R, Zheng Y H 2025 Acta Phys. Sin. 74 059501Google Scholar

    [23]

    McKenzie K, Gray M B, Lam P K, McClelland D E 2007 Appl. Opt. 46 3389Google Scholar

    [24]

    Schnabel R, Mavalvala N, McClelland D E, Lam P K 2010 Nat. Commun. 1 122Google Scholar

    [25]

    Vahlbruch H, Chelkowski S, Danzmann K, Schnabel R 2007 New J. Phys. 9 371Google Scholar

    [26]

    Wu M C, Schmittberger B L, Brewer N R, Speirs R W, Jones K M, Lett P D 2019 Opt. Express 27 4769Google Scholar

    [27]

    Meylahn F, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 129 121103Google Scholar

    [28]

    Gao L, Zheng L A., Lu B, Shi S P, Tian L, Zheng Y H 2024 Light: Sci. Appl. 13 294Google Scholar

    [29]

    Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262Google Scholar

    [30]

    王炜杰, 李番, 李健博, 鞠明健, 郑立昂, 田宇航, 尹王保, 田龙, 郑耀辉 2022 红外与激光工程 51 20220300Google Scholar

    Wang W J, Li F, Li J B, Ju M J, Zheng L A, Tian Y H, Yin W B, Tian L, Zheng Y H 2022 Infrared Laser Eng. 51 20220300Google Scholar

    [31]

    Wu Y M, Tian L, Yao W X, Shi S P, Liu X, Lu B, Wang Y J, Zheng Y H 2024 Appl. Phys. Lett. 124 114002Google Scholar

    [32]

    Shi S P, Tian L, Wang Y J, Zheng Y H, Xie C D, Peng K C 2020 Phys. Rev. Lett. 125 070502Google Scholar

    [33]

    史少平, 武奕淼, 刘璇, 田龙, 郑耀辉 2024 量子光学学报 30 040102Google Scholar

    Shi S P, Wu Y M, Liu X, Tian L, Zheng Y H 2024 J. Quantum Opt. 30 040102Google Scholar

    [34]

    王鼎康, 武晋泽, 宋志刚, 李晋红 2024 量子光学学报 30 041001Google Scholar

    Wang D K, Wu J Z, Song Z G, Li J H 2024 J. Quantum Opt. 30 041001Google Scholar

    [35]

    Graeme J 1996 Photodiode amplifiers: op amp solutions (New York: McGraw-Hill) pp87–92

    [36]

    Lu Q, Shen Q, Cao Y, Liao S K, Peng C Z 2019 IEEE Trans. Nucl. Sci. 66 1048Google Scholar

    [37]

    AD797: Ultralow Distortion, Ultralow Noise Op Amp Data Sheet (Rev. K) https://www.analog.com/media/en/technical-documentation/data-sheets/AD797.pdf [2025-5-12]

    [38]

    AD8671/AD8672/AD8674: Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers Data Sheet (Rev. F) https://www.analog.com/media/en/technical-documentation/data-sheets/AD8671_8672_8674.pdf [2025-5-12]

    [39]

    Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z, Peng K C 2015 Opt. Express 23 23859Google Scholar

    [40]

    李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 71 209501Google Scholar

    Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y H 2022 Acta Phys. Sin. 71 209501Google Scholar

  • 图 1  基于TIA的平衡光电探测器示意图(OPA1/2, 运算放大器1/2; PD, 光电二极管; Vbias, 偏置电压; VAC, 交流电压信号; VDC, 直流电压信号)

    Fig. 1.  Schematic diagram of the balanced detector based on TIA. OPA1/2, operational amplifier 1/2; PD, photodiode; Vbias, bias voltage; VAC, AC voltage signal; VDC, DC voltage signal.

    图 2  光电二极管和TIA的等效电路模型

    Fig. 2.  Noise response model of photodiode and TIA.

    图 3  平衡光电探测器电路原理图(FER, 磁珠; RP, 滑动变阻器)

    Fig. 3.  Circuit layout of balanced detector. FER, ferrite bead; RP, variable resistor.

    图 4  基于LTspice软件的电路仿真图 (a) 时域参数扫描分析图; (b) 频域参数扫描分析图

    Fig. 4.  Electronic circuit simulation based on LTspice software: (a) Time domain parameter scan analysis results; (b) frequency domain parameter scan analysis results.

    图 5  平衡光电探测器性能测试评估装置图(ISO, 光学隔离器; HWP, 半波片; PBS, 偏振分束器; EOAM, 电光振幅调制器; SG, 信号发生器; BHD, 平衡光电探测器; SA, 频谱分析仪; OSC, 示波器; Meter, 高精度数字万用表)

    Fig. 5.  Balanced detector performance test and evaluation device. ISO, isolator; HWP, half-wave plate; PBS, polarization beam splitter; EOAM, electro-optic amplitude modulator; SG, signal generator; BHD, balanced homodyne detector; SA, spectrum analyzer; OSC, oscilloscope; Meter, high-precision digital multimeter.

    图 6  平衡光电探测器CMRR测试图

    Fig. 6.  CMRR of the balanced detector.

    图 7  平衡光电探测器线性度测试噪声谱表征 (a) 1 kHz—1.5 MHz频段性能的测量结果; (b) 1 mHz—1 Hz频段性能的测量结果

    Fig. 7.  Balanced detector linearity test noise spectral characterization: (a) Measured noise spectra from 1 kHz to 1.5 MHz; (b) noise power spectrum from 1 Hz downwards to 1 mHz.

  • [1]

    Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R X, Adya V B, Affeldt C 2020 Phys. Rev. Lett. 125 101102Google Scholar

    [2]

    Vitale S 2021 Science 372 eabc7397Google Scholar

    [3]

    Abbott T D, Abraham S, Acernese F, et al. 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [4]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [5]

    王在渊, 王洁浩, 李宇航, 柳强 2023 物理学报 72 054205Google Scholar

    Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 054205Google Scholar

    [6]

    Jia W X, Xu V, Kuns K, et al. 2024 Science 385 1318Google Scholar

    [7]

    McCuller L, Whittle C, Ganapathy D, Komori K, Tse K, Fernandez-Galiana A, Barsotti L, Fritschel P, MacInnis M, Matichard F, Mason K, Mavalvala N, Mittleman R, Yu H C, Zucker M E, Evans M 2020 Phys. Rev. Lett. 124 171102Google Scholar

    [8]

    Aasi J, Abadie J, Abbott B P, Abbott R, et al. 2013 Nat. Photonics 7 613Google Scholar

    [9]

    Acernese F, Agathos M, Aiello L, et al. 2019 Phys. Rev. Lett. 123 231108Google Scholar

    [10]

    Mikhail K, Ma Y Q, Chen Y B, Schnabel R 2019 Light: Sci. Appl. 8 118Google Scholar

    [11]

    Harry G M, LIGO Scientific Collaboration 2010 Classical Quantum Gravity 27 084006Google Scholar

    [12]

    Matichard F, Lantz B, Mittleman R, et al. 2015 Classical Quantum Gravity 32 185003Google Scholar

    [13]

    Thorne K S, Winstein C J 1999 Phys. Rev. D 60 082001Google Scholar

    [14]

    Acernese F, Agathos M, Agatsuma K, et al. 2014 Classical Quantum Gravity 32 024001Google Scholar

    [15]

    Luo J, Chen L S, Duan H Z, Gong Y G, Hu S C, Ji J H, Liu Q, Mei J W, Milyukov V, Sazhin M, Shao C G, Toth V T, Tu H B, Wang Y M, Wang Y, Yeh H C, Zhan M S, Zhang Y H, Zharov V, Zhou Z B 2016 Classical Quantum Gravity 33 035010Google Scholar

    [16]

    Jennrich O 2009 Classical Quantum Gravity 26 153001Google Scholar

    [17]

    Luo Z R, Wang Y, Wu Y L, Hu W R, Jin G 2021 Prog. Theor. Exp. Phys. 2021 05A108Google Scholar

    [18]

    Luo Z R, Guo Z K, Jin G, Wu Y L, Hu W R 2020 Results Phys. 16 102918Google Scholar

    [19]

    罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar

    Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech. 43 415Google Scholar

    [20]

    Badaracco F, Rossi C D, Fiori I, Harms J, Miyo K, Paoletti F, Tanaka T, Washimi T, Yokozawa T 2021 Phys. Rev. D 104 042006Google Scholar

    [21]

    Stefszky M S, Mow-Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, McClelland D E 2012 Classical Quantum Gravity 29 145015Google Scholar

    [22]

    尚鑫, 李番, 马正磊, 黄天时, 党昊, 李卫, 尹王保, 田龙, 陈力荣, 郑耀辉 2025 物理学报 74 059501Google Scholar

    Shang X, LI F, Ma Z L, Huang T S, Dang H, LI W, Yin W B, Tian L, Cheng L R, Zheng Y H 2025 Acta Phys. Sin. 74 059501Google Scholar

    [23]

    McKenzie K, Gray M B, Lam P K, McClelland D E 2007 Appl. Opt. 46 3389Google Scholar

    [24]

    Schnabel R, Mavalvala N, McClelland D E, Lam P K 2010 Nat. Commun. 1 122Google Scholar

    [25]

    Vahlbruch H, Chelkowski S, Danzmann K, Schnabel R 2007 New J. Phys. 9 371Google Scholar

    [26]

    Wu M C, Schmittberger B L, Brewer N R, Speirs R W, Jones K M, Lett P D 2019 Opt. Express 27 4769Google Scholar

    [27]

    Meylahn F, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 129 121103Google Scholar

    [28]

    Gao L, Zheng L A., Lu B, Shi S P, Tian L, Zheng Y H 2024 Light: Sci. Appl. 13 294Google Scholar

    [29]

    Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262Google Scholar

    [30]

    王炜杰, 李番, 李健博, 鞠明健, 郑立昂, 田宇航, 尹王保, 田龙, 郑耀辉 2022 红外与激光工程 51 20220300Google Scholar

    Wang W J, Li F, Li J B, Ju M J, Zheng L A, Tian Y H, Yin W B, Tian L, Zheng Y H 2022 Infrared Laser Eng. 51 20220300Google Scholar

    [31]

    Wu Y M, Tian L, Yao W X, Shi S P, Liu X, Lu B, Wang Y J, Zheng Y H 2024 Appl. Phys. Lett. 124 114002Google Scholar

    [32]

    Shi S P, Tian L, Wang Y J, Zheng Y H, Xie C D, Peng K C 2020 Phys. Rev. Lett. 125 070502Google Scholar

    [33]

    史少平, 武奕淼, 刘璇, 田龙, 郑耀辉 2024 量子光学学报 30 040102Google Scholar

    Shi S P, Wu Y M, Liu X, Tian L, Zheng Y H 2024 J. Quantum Opt. 30 040102Google Scholar

    [34]

    王鼎康, 武晋泽, 宋志刚, 李晋红 2024 量子光学学报 30 041001Google Scholar

    Wang D K, Wu J Z, Song Z G, Li J H 2024 J. Quantum Opt. 30 041001Google Scholar

    [35]

    Graeme J 1996 Photodiode amplifiers: op amp solutions (New York: McGraw-Hill) pp87–92

    [36]

    Lu Q, Shen Q, Cao Y, Liao S K, Peng C Z 2019 IEEE Trans. Nucl. Sci. 66 1048Google Scholar

    [37]

    AD797: Ultralow Distortion, Ultralow Noise Op Amp Data Sheet (Rev. K) https://www.analog.com/media/en/technical-documentation/data-sheets/AD797.pdf [2025-5-12]

    [38]

    AD8671/AD8672/AD8674: Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers Data Sheet (Rev. F) https://www.analog.com/media/en/technical-documentation/data-sheets/AD8671_8672_8674.pdf [2025-5-12]

    [39]

    Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z, Peng K C 2015 Opt. Express 23 23859Google Scholar

    [40]

    李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 71 209501Google Scholar

    Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y H 2022 Acta Phys. Sin. 71 209501Google Scholar

  • [1] 尚鑫, 李番, 马正磊, 黄天时, 党昊, 李卫, 尹王保, 田龙, 陈力荣, 郑耀辉. 0.1 mHz—1 Hz频段超低噪声光电探测器实验研究. 物理学报, 2025, 74(5): 059501. doi: 10.7498/aps.74.20241635
    [2] 陈志刚, 张伟君, 张兴雨, 王钰泽, 熊佳敏, 洪逸裕, 原蒲升, 吴玲, 王镇, 尤立星. 基于运算放大器的超导纳米线单光子探测器低温直流耦合读出电路. 物理学报, 2024, 73(13): 138501. doi: 10.7498/aps.73.20240398
    [3] 赵卫, 付士杰, 盛泉, 薛凯, 史伟, 姚建铨. 辅助光对高功率掺镱光纤激光放大器受激拉曼散射效应的抑制作用. 物理学报, 2024, 73(20): 204201. doi: 10.7498/aps.73.20240895
    [4] 郭忠凯, 李永刚, 于博丞, 周世超, 孟庆宇, 陆鑫鑫, 黄一帆, 刘贵鹏, 陆俊. 锁相放大器的研究进展. 物理学报, 2023, 72(22): 224206. doi: 10.7498/aps.72.20230579
    [5] 王在渊, 王洁浩, 李宇航, 柳强. 面向空间引力波探测的毫赫兹频段低强度噪声单频激光器. 物理学报, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [6] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器. 物理学报, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [7] 汤永辉, 郑铸, 谢实梦, 黄林, 蒋华北. 基于多路放大器加法电路噪声抑制的热声成像技术. 物理学报, 2020, 69(24): 240701. doi: 10.7498/aps.69.20201036
    [8] 薛佳, 秦际良, 张玉驰, 李刚, 张鹏飞, 张天才, 彭堃墀. 低频标准真空涨落的测量. 物理学报, 2016, 65(4): 044211. doi: 10.7498/aps.65.044211
    [9] 祁晓萌, 彭文博, 赵小龙, 贺永宁. 基于高阻ZnO薄膜的光电导型紫外探测器. 物理学报, 2015, 64(19): 198501. doi: 10.7498/aps.64.198501
    [10] 洪庆辉, 李志军, 曾金芳, 曾以成. 基于电流反馈运算放大器的忆阻混沌电路设计与仿真. 物理学报, 2014, 63(18): 180502. doi: 10.7498/aps.63.180502
    [11] 陈昭福, 黄华, 常安碧, 许州, 何琥, 雷禄容, 胡进光, 袁欢, 刘振帮. S波段长脉冲相对论速调管放大器中杂模振荡导致的脉冲缩短抑制研究. 物理学报, 2014, 63(23): 238402. doi: 10.7498/aps.63.238402
    [12] 陈永东, 金晓, 李正红, 黄华, 吴洋. 高增益相对论速调管放大器杂模振荡抑制研究. 物理学报, 2012, 61(22): 228501. doi: 10.7498/aps.61.228501
    [13] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化. 物理学报, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [14] 杨若夫, 杨平, 沈锋. 基于能动分块反射镜的两路光纤放大器相位探测及其相干合成实验研究. 物理学报, 2009, 58(12): 8297-8301. doi: 10.7498/aps.58.8297
    [15] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [16] 张春福, 郝 跃, 游海龙, 张金凤, 周小伟. 界面电偶极子对GaN/AlGaN/GaN光电探测器紫外/太阳光选择比的影响. 物理学报, 2005, 54(8): 3810-3814. doi: 10.7498/aps.54.3810
    [17] 赵宏志, 董太乾. 一种新型的量子放大器——跃迁拍频放大器. 物理学报, 1987, 36(11): 1526-1528. doi: 10.7498/aps.36.1526
    [18] 王之江. 红宝石光量子放大器. 物理学报, 1964, 20(1): 63-71. doi: 10.7498/aps.20.63
    [19] 成众志, 华钧正. 行波式负阻放大器的相位及增益特性分析. 物理学报, 1963, 19(7): 425-441. doi: 10.7498/aps.19.425
    [20] 卓济苍, 续競存. 点接触放大器的放大作用. 物理学报, 1958, 14(4): 317-334. doi: 10.7498/aps.14.317
计量
  • 文章访问数:  814
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-15
  • 修回日期:  2025-06-23
  • 上网日期:  2025-07-19
  • 刊出日期:  2025-09-20

/

返回文章
返回