搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AgBiSCl2光电与热电性能的第一性原理研究

王思航 陈梦菡 张丽萍

引用本文:
Citation:

AgBiSCl2光电与热电性能的第一性原理研究

王思航, 陈梦菡, 张丽萍

First-principles study of photovoltaic and thermoelectric properties of AgBiSCl2

WANG Sihang, CHEN Menghan, ZHANG Liping
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 混合阴离子硫卤化物凭借其独特的晶格动力学和可调电子结构, 在热电与光电材料领域备受关注. 本文基于密度泛函理论的第一性原理计算, 结合玻尔兹曼输运方程、声子重整化模型, 研究了AgBiSCl2的光电、热电性能. 结果表明, AgBiSCl2为直接带隙半导体且带隙为1.72 eV, 紫外区光吸收系数达到1 × 106 cm–1, 3 μm厚度下光谱极限最大效率为28.06 %. AgBiSCl2中Ag原子离域引起的rattling振动引发强非谐声子散射, 导致极低的晶格热导率, 在300 K时平均热导率中kpkc分别为0.246 W/mK 和0.132 W/mK. 700 K 时p型和 n 型最大ZT分别为0.77和0.69. 由此表明AgBiSCl2在高效热电能量转换与紫外光电探测器领域具有重要应用潜力, 为设计多功能材料提供了理论参考.
    This work systematically investigates the potential of the hybrid anion semiconductor AgBiSCl2 for photovoltaic and thermoelectric applications, aiming to provide theoretical guidance for high-performance energy conversion devices. Structural analysis reveals favorable ductility and a relatively low Debye temperature (219 K). Electronic structure calculations show that AgBiSCl2 is a direct band gap semiconductor, with a gap of approximately 1.72 eV after including spin–orbit coupling effects. The conduction band is mainly derived from Bi 6p orbitals, while the valence band is dominated by contributions from Ag 4d, Cl 3p, and S 3p orbitals.Analysis of interatomic interactions indicates that Ag—S and Ag—Cl bonds are relatively weak, resulting in local structural softness and enhanced lattice anharmonicity. These weak bonds facilitate phonon scattering and give rise to low-frequency localized “rattling” vibrations primarily associated with Ag atoms, contributing to reduced lattice thermal conductivity. In contrast, Bi—S bonds exhibit stronger, more directional interactions, which help stabilize the overall structure. The coexistence of weak bonding and strong lattice coupling enables favorable modulation of thermal transport properties.Optically, AgBiSCl2 possesses a high static dielectric constant (ε1(0) = 5.60) and exhibits strong absorption in the ultraviolet region, with absorption coefficients rapidly exceeding 1 × 106 cm–1. A theoretical solar conversion efficiency of up to 28.06% is predicted for a 3 μm-thick absorber layer,highlighting its potential as a high-performance photovoltaic material.In terms of thermal transport, phonon spectra exhibit mode hardening with temperature increasing, while flat optical branches in the 30–70 cm–1 range enhance phonon scattering. The localized Ag vibrations intensify the anharmonicity, reducing phonon lifetimes and group velocities. As a result, at 300 K, the lattice thermal conductivities via the Peierls and coherent channels are calculated to be 0.246 W·m–1·K–1 and 0.132 W·m–1·K–1, respectively. For electronic transport, the p-type material maintains a higher Seebeck coefficient than the n-type, while the latter shows greater electrical conductivity. At 700 K, the thermoelectric figure of merit (ZT) reaches 0.77 for p-type and 0.69 for n-type AgBiSCl2, indicating promising high-temperature thermoelectric performance.In summary, AgBiSCl2 exhibits excellent potential for dual photovoltaic and thermoelectric applications. Its unique bonding features and lattice response mechanisms offer valuable insights into designing multifunctional energy conversion materials.
  • 图 1  (a) AgBiSCl2的晶体结构; (b)电子局域函数; (c)最近邻原子对的COHP分析; (d)能带结构(考虑HSE06); (e)能带结构(考虑HSE06+SOC); (f)态密度

    Fig. 1.  (a) Crystal structure of AgBiSCl2; (b) electron localization function; (c) COHP analysis of nearest-neighbor atom pairs; (d) band structure (HSE06); (e) band structure (HSE06 + SOC); (f)density of states.

    图 2  (a) 介电函数实部; (b) 介电函数虚部; (c) 光吸收系数; (d) 反射率; (e) 折射率; (f) SLME

    Fig. 2.  (a) Real part of the dielectric function; (b) imaginary part of the dielectric function; (c) optical absorption coefficient; (d) reflectivity; (e) refractive index; (f) SLME.

    图 3  (a) AgBiSCl2不同温度下的声子谱; (b) 温度为0 K时的声学支和低频光学支; (c) 温度300 K, 500 K和700 K时的声子态密度; (d) 不同温度下均方位移

    Fig. 3.  (a) Phonon dispersion of AgBiSCl2 at different temperatures; (b) acoustic branches and low-frequency optical branches at 0 K; (c) density of states at 300 K, 500 K, and 700 K; (d) root-mean-square displacement at different temperatures.

    图 4  (a) AgBiSCl2温度依赖的晶格热导率; (b) 温度为300 K时热导率和累积热导随频率的变化

    Fig. 4.  (a) Temperature-dependent lattice thermal conductivity of AgBiSCl2; (b) variation of thermal conductivity and cumulative thermal conductivity with frequency at 300 K.

    图 5  (a) 群速度; (b) Grüneisen常数; (c) 声子寿命(黑色表示Wigner极限, 紫色表示Ioffe-Regel极限); (d) 三声子散射相空间

    Fig. 5.  (a) Group velocity; (b) Grüneisen parameter; (c) phonon lifetime (black denotes the Wigner limit, purple denotes the Ioffe–Regel limit); (d) three-phonon scattering phase space.

    图 6  在300 K时a, bc方向相干热导率模式特定贡献的三维可视化

    Fig. 6.  Three-dimensional visualization of mode-specific contributions to coherent thermal conductivity along the a, b, and c directions at 300 K.

    图 7  AgBiSCl2的电输运参数与载流子浓度关系 (a), (d) 塞贝克系数; (b), (e) 电导率; (c), (f) 功率因子

    Fig. 7.  Electrical transport parameters of AgBiSCl2 as a function of carrier concentration: (a), (d) Seebeck coefficient; (b), (e) electrical conductivity; (c), (f) power factor.

    图 8  AgBiSCl2在(a) p型掺杂和(b) n型掺杂下的ZT

    Fig. 8.  ZT of AgBiSCl2 at different temperatures: (a) p-type doping; (b) n-type doping.

    表 1  AgBiSCl2空穴和电子的有效质量(m0 = 9.1 × 10–31 kg)

    Table 1.  Effective masses of holes and electrons of AgBiSCl2 (m0 = 9.1 × 10–31 kg).

    Carrier typemx/m0my/m0mz/m0
    h0.8730.8730.666
    e0.2740.2740.537
    下载: 导出CSV

    表 2  零频率下 AgBiSCl2 的介电常数、反射率与折射率

    Table 2.  Calculated zero-frequency dielectric constant, reflectivity, and refractive index of AgBiSCl2.

    ParametersabcAverage
    ε1(0)5.845.085.275.40
    R(0)0.170.150.150.16
    n(0)2.422.252.32.32
    下载: 导出CSV
  • [1]

    Kato D, Hongo K, Maezono R, Higashi M, Kunioku H, Yabuuchi M, Suzuki H, Okajima H, Zhong C, Nakano K, Abe R, Kageyama H 2017 J. Am. Chem. Soc. 139 18725Google Scholar

    [2]

    Luu S D N, Vaqueiro P 2016 J. Materiomics 2 131Google Scholar

    [3]

    Ghorpade U V, Suryawanshi M P, Green M A, Wu T, Hao X, Ryan K M 2023 Chem. Rev. 123 327Google Scholar

    [4]

    Kageyama H, Hayashi K, Maeda K, Attfield J P, Hiroi Z, Rondinelli J M, Poeppelmeier K R 2018 Nat. Commun. 9 772Google Scholar

    [5]

    Gibson Q D, Zhao T, Daniels L M, Walker H C, Daou R, Hébert S, Zanella M, Dyer M S, Claridge J B, Slater B, Gaultois M W, Corà F, Alaria J, Rosseinsky M J 2021 Science 373 1017Google Scholar

    [6]

    Majhi K, Pal K, Lohani H, Banerjee A, Mishra P, Yadav A K, Ganesan R, Sekhar B R, Waghmare U V, Anil Kumar P S 2017 Appl. Phys. Lett. 110 162102Google Scholar

    [7]

    Qiu W J, Xi L L, Wei P, Ke X Z, Yang J H, Zhang W Q 2014 PNAS 111 15031Google Scholar

    [8]

    Xie L, Feng J H, Li R, He J Q 2020 Phys. Rev. Lett. 125 245901Google Scholar

    [9]

    Ruck M, Poudeu Poudeu P F, Söhnel T 2004 Z. Anorg. Allg. Chem. 630 63Google Scholar

    [10]

    Quarta D, Toso S, Fieramosca A, Dominici L, Caliandro R, Moliterni A, Tobaldi D M, Saleh G, Gushchina I, Brescia R, Prato M, Infante I, Cola A, Giannini C, Manna L, Gigli G, Giansante C 2023 Chem. Mater. 35 9900Google Scholar

    [11]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [12]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [13]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [14]

    Heyd J, Peralta J E, Scuseria G E, Martin R L 2005 J. Chem. Phys. 123 174101Google Scholar

    [15]

    Saha S, Sinha T P, Mookerjee A 2000 J. Phys. Condens. Matter 12 3325Google Scholar

    [16]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [17]

    Ganose A M, Park J, Faghaninia A, Woods-Robinson R, Persson K A, Jain A 2021 Nat. Commun. 12 2222Google Scholar

    [18]

    Shockley W 1950 Electrons and Holes in Semiconductors: With Applications to Transistor Electronics (D Van Nostrand Co) pp558

    [19]

    Ganose A M, Park J, Faghaninia A, Woods-Robinson R, Persson K A, Jain A 2021 Nat. Commun. 12 2222Google Scholar

    [20]

    Rode D L 1975 Semiconductors and Semimetals(Elsevier) pp1–89

    [21]

    Tadano T, Tsuneyuki S 2015 Phys. Rev. B 92 054301Google Scholar

    [22]

    Tadano T, Gohda Y, Tsuneyuki S 2014 J. Phys. : Condens. Matter. 26 225402Google Scholar

    [23]

    Zhou F, Sadigh B, Åberg D, Xia Y, Ozoliņš V 2019 Phys. Rev. B 100 184309Google Scholar

    [24]

    Ju Z, Ma D K, Chang Z 2025 Phys. Rev. B 111 134302Google Scholar

    [25]

    Zheng J Z, Lin C P, Lin C J, Hautier G, Guo R Q, Huang B L 2024 npj Comput. Mater. 10 30Google Scholar

    [26]

    Xie Q Y, Xiao F, Zhang K W, Wang B T 2024 Phys. Rev. B 110 045203

    [27]

    Xiao F, Xie Q Y, Ming X, Li H, Zhang J R, Wang B T 2024 Phys. Rev. B 109 245202Google Scholar

    [28]

    Xie Q Y, Ma J J, Liu Q Y, Liu P F, Zhang P, Zhang K W, Wang B T 2022 Phys. Chem. Chem. Phys. 24 7303Google Scholar

    [29]

    Simoncelli M, Marzari N, Mauri F 2019 Nat. Phys. 15 809Google Scholar

    [30]

    Simoncelli M, Marzari N, Mauri F 2022 Phys. Rev. X 12

    [31]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

    [32]

    Hao Y Z, Che J W, Wang X Y, Li X J, Lookman T, Sun J, Ding X D, Gao Z B 2025 Phys. Rev. B 111 195207Google Scholar

    [33]

    Cutler M, Leavy J F, Fitzpatrick R L 1964 Phys. Rev. 133 A1143Google Scholar

    [34]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [35]

    Zhu C, Liu Y, Wang D, Zhu Z, Zhou P, Tu Y, Yang G, Chen H, Zang Y, Du J, Yan W 2024 Cell Rep. Phys. Sci. 5 102321Google Scholar

    [36]

    Basera P, Bhattacharya S 2022 J. Phys. Chem. Lett. 13 6439Google Scholar

    [37]

    Xia Y, Ozoliņš V, Wolverton C 2020 Phys. Rev. Lett. 125 085901Google Scholar

    [38]

    Tadano T, Saidi W A 2022 Phys. Rev. Lett. 129 185901Google Scholar

    [39]

    Li W, Mingo N 2014 Phys. Rev. B 89 184304Google Scholar

    [40]

    Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R H, Iversen B B 2008 Nature Mater 7 811Google Scholar

    [41]

    Allen P B, Feldman J L 1989 Phys. Rev. Lett. 62 645Google Scholar

    [42]

    Zheng J Z, Shi D L, Yang Y W, Lin C J, Huang H, Guo R Q, Huang B L 2022 Phys. Rev. B 105 224303Google Scholar

    [43]

    郑建军, 张丽萍 2023 物理学报 72 086301Google Scholar

    Zheng J J, Zhang L P 2023 Acta Phys. Sin. 72 086301Google Scholar

    [44]

    Chen X K, Zhu J, Qi M, Jia P Z, Xie Z X 2025 Phys. Rev. Appl. 23 034085Google Scholar

  • [1] 任清勇, 王建立, 李昺, 马杰, 童欣. 复杂晶格动力学与能源材料的中子散射研究. 物理学报, doi: 10.7498/aps.74.20241178
    [2] 何俊松, 罗丰, 王剑, 杨士冠, 翟立军, 程林, 刘虹霞, 张艳, 李艳丽, 孙志刚, 胡季帆. 熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能. 物理学报, doi: 10.7498/aps.73.20240112
    [3] 袁珉慧, 乐文凯, 谈小建, 帅晶. 二维共价键子结构Zintl相热电材料研究及进展. 物理学报, doi: 10.7498/aps.70.20211010
    [4] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能. 物理学报, doi: 10.7498/aps.70.20201852
    [5] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, doi: 10.7498/aps.70.20202020
    [6] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望. 物理学报, doi: 10.7498/aps.70.20211050
    [7] 王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先. PbTe基热电接头界面性能. 物理学报, doi: 10.7498/aps.69.20201080
    [8] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能. 物理学报, doi: 10.7498/aps.69.20200436
    [9] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能. 物理学报, doi: 10.7498/aps.68.20190073
    [10] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究. 物理学报, doi: 10.7498/aps.67.20180382
    [11] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能. 物理学报, doi: 10.7498/aps.65.107201
    [12] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 物理学报, doi: 10.7498/aps.64.197201
    [13] 刘义, 张清, 李海金, 李勇, 刘厚通. Sr掺杂钙钛矿型氧化物Y1-xSrxCoO3的溶胶-凝胶制备及电阻率温度关系研究. 物理学报, doi: 10.7498/aps.62.047202
    [14] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, doi: 10.7498/aps.62.097301
    [15] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, doi: 10.7498/aps.61.087202
    [16] 葛振华, 张波萍, 于昭新, 刘勇, 李敬锋. 机械合金化过程对硫化铋块体热电性能的影响机理. 物理学报, doi: 10.7498/aps.61.048401
    [17] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, doi: 10.7498/aps.59.1243
    [18] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能. 物理学报, doi: 10.7498/aps.56.3473
    [19] 刘玮书, 张波萍, 李敬锋, 刘 静. 机械合金化合成CoSb3过程中的固相反应机理的热力学解释. 物理学报, doi: 10.7498/aps.55.465
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 物理学报, doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  192
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-18
  • 修回日期:  2025-07-17
  • 上网日期:  2025-08-08

/

返回文章
返回