搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AgBiSCl2光电与热电性能的第一性原理研究

王思航 陈梦菡 张丽萍

引用本文:
Citation:

AgBiSCl2光电与热电性能的第一性原理研究

王思航, 陈梦菡, 张丽萍
cstr: 32037.14.aps.74.20250650

First-principles study of photovoltaic and thermoelectric properties of AgBiSCl2

WANG Sihang, CHEN Menghan, ZHANG Liping
cstr: 32037.14.aps.74.20250650
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 混合阴离子硫卤化物凭借其独特的晶格动力学和可调电子结构, 在热电与光电材料领域备受关注. 本文基于密度泛函理论的第一性原理计算, 结合玻尔兹曼输运方程、声子重整化模型, 研究了AgBiSCl2的光电、热电性能. 结果表明, AgBiSCl2为直接带隙半导体且带隙为1.72 eV, 紫外区光吸收系数达到1 × 106 cm–1, 3 μm厚度下光谱极限最大效率为28.06%. AgBiSCl2中Ag原子离域引起的rattling振动引发强非谐声子散射, 导致极低的晶格热导率, 在300 K时平均热导率中κpκc分别为0.246 W/mK 和0.132 W/mK. 700 K 时p型和 n 型最大ZT分别为0.77和0.69. 由此表明AgBiSCl2在高效热电能量转换与紫外光电探测器领域具有重要应用潜力, 为设计多功能材料提供了理论参考.
    This work systematically investigates the potential of the hybrid anion semiconductor AgBiSCl2 for photovoltaic and thermoelectric applications, aiming to provide theoretical guidance for high-performance energy conversion devices. Structural analysis reveals favorable ductility and a relatively low Debye temperature (219 K). Electronic structure calculations show that AgBiSCl2 is a direct band gap semiconductor, with a gap of approximately 1.72 eV after including spin-orbit coupling effects. The conduction band is mainly derived from Bi 6p orbitals, while the valence band is dominated by contributions from Ag 4d, Cl 3p, and S 3p orbitals.Analysis of interatomic interactions indicates that Ag—S and Ag—Cl bonds are relatively weak, resulting in local structural softness and enhanced lattice anharmonicity. These weak bonds facilitate phonon scattering and give rise to low-frequency localized “rattling” vibrations primarily associated with Ag atoms, contributing to reduced lattice thermal conductivity. In contrast, Bi—S bonds exhibit stronger, more directional interactions, which help stabilize the overall structure. The coexistence of weak bonding and strong lattice coupling enables favorable modulation of thermal transport properties.Optically, AgBiSCl2 possesses a high static dielectric constant (ε1(0) = 5.60) and exhibits strong absorption in the ultraviolet region, with absorption coefficients rapidly exceeding 1 × 106 cm–1. A theoretical solar conversion efficiency of up to 28.06% is predicted for a 3 μm-thick absorber layer, highlighting its potential as a high-performance photovoltaic material.In terms of thermal transport, phonon spectra exhibit mode hardening with temperature increasing, while flat optical branches in the 30–70 cm–1 range enhance phonon scattering. The localized Ag vibrations intensify the anharmonicity, reducing phonon lifetimes and group velocities. As a result, at 300 K, the lattice thermal conductivities via the Peierls and coherent channels are calculated to be 0.246 W·m–1·K–1 and 0.132 W·m–1·K–1, respectively. For electronic transport, the p-type material maintains a higher Seebeck coefficient than the n-type, while the latter shows greater electrical conductivity. At 700 K, the thermoelectric figure of merit (ZT ) reaches 0.77 for p-type and 0.69 for n-type AgBiSCl2, indicating promising high-temperature thermoelectric performance.In summary, AgBiSCl2 exhibits excellent potential for dual photovoltaic and thermoelectric applications. Its unique bonding features and lattice response mechanisms offer valuable insights into designing multifunctional energy conversion materials.
      通信作者: 张丽萍, 3391@cumt.edu.cn
    • 基金项目: 江苏省科技厅科技项目-产学研联合创新资金(批准号: BY2013019-07)资助的课题.
      Corresponding author: ZHANG Liping, 3391@cumt.edu.cn
    • Funds: Project supported by the Industry-University-Research Collaborative Innovation Fund of the Jiangsu Provincial Department of Science and Technology, China(Grant No. BY2013019-07).
    [1]

    Kato D, Hongo K, Maezono R, Higashi M, Kunioku H, Yabuuchi M, Suzuki H, Okajima H, Zhong C, Nakano K, Abe R, Kageyama H 2017 J. Am. Chem. Soc. 139 18725Google Scholar

    [2]

    Luu S D N, Vaqueiro P 2016 J. Materiomics 2 131Google Scholar

    [3]

    Ghorpade U V, Suryawanshi M P, Green M A, Wu T, Hao X, Ryan K M 2023 Chem. Rev. 123 327Google Scholar

    [4]

    Kageyama H, Hayashi K, Maeda K, Attfield J P, Hiroi Z, Rondinelli J M, Poeppelmeier K R 2018 Nat. Commun. 9 772Google Scholar

    [5]

    Gibson Q D, Zhao T, Daniels L M, Walker H C, Daou R, Hébert S, Zanella M, Dyer M S, Claridge J B, Slater B, Gaultois M W, Corà F, Alaria J, Rosseinsky M J 2021 Science 373 1017Google Scholar

    [6]

    Majhi K, Pal K, Lohani H, Banerjee A, Mishra P, Yadav A K, Ganesan R, Sekhar B R, Waghmare U V, Anil Kumar P S 2017 Appl. Phys. Lett. 110 162102Google Scholar

    [7]

    Qiu W J, Xi L L, Wei P, Ke X Z, Yang J H, Zhang W Q 2014 PNAS 111 15031Google Scholar

    [8]

    Xie L, Feng J H, Li R, He J Q 2020 Phys. Rev. Lett. 125 245901Google Scholar

    [9]

    Ruck M, Poudeu Poudeu P F, Söhnel T 2004 Z. Anorg. Allg. Chem. 630 63Google Scholar

    [10]

    Quarta D, Toso S, Fieramosca A, Dominici L, Caliandro R, Moliterni A, Tobaldi D M, Saleh G, Gushchina I, Brescia R, Prato M, Infante I, Cola A, Giannini C, Manna L, Gigli G, Giansante C 2023 Chem. Mater. 35 9900Google Scholar

    [11]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [12]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [13]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [14]

    Heyd J, Peralta J E, Scuseria G E, Martin R L 2005 J. Chem. Phys. 123 174101Google Scholar

    [15]

    Saha S, Sinha T P, Mookerjee A 2000 J. Phys. Condens. Matter 12 3325Google Scholar

    [16]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [17]

    Ganose A M, Park J, Faghaninia A, Woods-Robinson R, Persson K A, Jain A 2021 Nat. Commun. 12 2222Google Scholar

    [18]

    Ramawat S, Kukreti S, Dixit A 2023 Phys. Rev. Materials 7 085403Google Scholar

    [19]

    Natarajan A R, Gupta M K, Mittal R, Kanchana V 2023 Mater. Today Commun. 34 105309Google Scholar

    [20]

    Rode D L 1975 Semiconductors and Semimetals (Elsevier) pp1–89

    [21]

    Tadano T, Tsuneyuki S 2015 Phys. Rev. B 92 054301Google Scholar

    [22]

    Tadano T, Gohda Y, Tsuneyuki S 2014 J. Phys.: Condens. Matter. 26 225402Google Scholar

    [23]

    Zhou F, Sadigh B, Åberg D, Xia Y, Ozoliņš V 2019 Phys. Rev. B 100 184309Google Scholar

    [24]

    Ju Z, Ma D K, Chang Z 2025 Phys. Rev. B 111 134302Google Scholar

    [25]

    Zheng J Z, Lin C P, Lin C J, Hautier G, Guo R Q, Huang B L 2024 npj Comput. Mater. 10 30Google Scholar

    [26]

    Xie Q Y, Xiao F, Zhang K W, Wang B T 2024 Phys. Rev. B 110 045203Google Scholar

    [27]

    Xiao F, Xie Q Y, Ming X, Li H, Zhang J R, Wang B T 2024 Phys. Rev. B 109 245202Google Scholar

    [28]

    Xie Q Y, Ma J J, Liu Q Y, Liu P F, Zhang P, Zhang K W, Wang B T 2022 Phys. Chem. Chem. Phys. 24 7303Google Scholar

    [29]

    Simoncelli M, Marzari N, Mauri F 2019 Nat. Phys. 15 809Google Scholar

    [30]

    Simoncelli M, Marzari N, Mauri F 2022 Phys. Rev. X 12 041011Google Scholar

    [31]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

    [32]

    Hao Y Z, Che J W, Wang X Y, Li X J, Lookman T, Sun J, Ding X D, Gao Z B 2025 Phys. Rev. B 111 195207Google Scholar

    [33]

    Cutler M, Leavy J F, Fitzpatrick R L 1964 Phys. Rev. 133 A1143Google Scholar

    [34]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [35]

    Zhu C, Liu Y, Wang D, Zhu Z, Zhou P, Tu Y, Yang G, Chen H, Zang Y, Du J, Yan W 2024 Cell Rep. Phys. Sci. 5 102321Google Scholar

    [36]

    Basera P, Bhattacharya S 2022 J. Phys. Chem. Lett. 13 6439Google Scholar

    [37]

    Xia Y, Ozoliņš V, Wolverton C 2020 Phys. Rev. Lett. 125 085901Google Scholar

    [38]

    Tadano T, Saidi W A 2022 Phys. Rev. Lett. 129 185901Google Scholar

    [39]

    Li W, Mingo N 2014 Phys. Rev. B 89 184304Google Scholar

    [40]

    Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R H, Iversen B B 2008 Nature Mater 7 811Google Scholar

    [41]

    Allen P B, Feldman J L 1989 Phys. Rev. Lett. 62 645Google Scholar

    [42]

    Zheng J Z, Shi D L, Yang Y W, Lin C J, Huang H, Guo R Q, Huang B L 2022 Phys. Rev. B 105 224303Google Scholar

    [43]

    郑建军, 张丽萍 2023 物理学报 72 086301Google Scholar

    Zheng J J, Zhang L P 2023 Acta Phys. Sin. 72 086301Google Scholar

    [44]

    Chen X K, Zhu J, Qi M, Jia P Z, Xie Z X 2025 Phys. Rev. Appl. 23 034085Google Scholar

  • 图 1  (a) AgBiSCl2的晶体结构; (b)电子局域函数; (c)最近邻原子对的COHP分析; (d)能带结构(考虑HSE06); (e)能带结构(考虑HSE06+SOC); (f)态密度

    Fig. 1.  (a) Crystal structure of AgBiSCl2; (b) electron localization function; (c) COHP analysis of nearest-neighbor atom pairs; (d) band structure (HSE06); (e) band structure (HSE06 + SOC); (f) density of states.

    图 2  (a) 介电函数实部; (b) 介电函数虚部; (c) 光吸收系数; (d) 反射率; (e) 折射率; (f) SLME

    Fig. 2.  (a) Real part of the dielectric function; (b) imaginary part of the dielectric function; (c) optical absorption coefficient; (d) reflectivity; (e) refractive index; (f) SLME.

    图 3  (a) AgBiSCl2不同温度下的声子谱; (b) 温度为0 K时的声学支和低频光学支; (c) 温度300 K, 500 K和700 K时的声子态密度; (d) 不同温度下均方位移

    Fig. 3.  (a) Phonon dispersion of AgBiSCl2 at different temperatures; (b) acoustic branches and low-frequency optical branches at 0 K; (c) density of states at 300 K, 500 K, and 700 K; (d) root-mean-square displacement at different temperatures.

    图 4  (a) AgBiSCl2温度依赖的晶格热导率; (b) 温度为300 K时热导率和累积热导率随频率的变化

    Fig. 4.  (a) Temperature-dependent lattice thermal conductivity of AgBiSCl2; (b) variation of thermal conductivity and cumulative thermal conductivity with frequency at 300 K.

    图 5  (a) 群速度; (b) Grüneisen常数; (c) 声子寿命(黑色表示Wigner极限, 紫色表示Ioffe-Regel极限); (d) 三声子散射相空间

    Fig. 5.  (a) Group velocity; (b) Grüneisen parameter; (c) phonon lifetime (black denotes the Wigner limit, purple denotes the Ioffe–Regel limit); (d) three-phonon scattering phase space.

    图 6  在300 K时(a)—(c) a, bc方向相干热导率模式特定贡献的三维可视化

    Fig. 6.  Three-dimensional visualization of mode-specific contributions to coherent thermal conductivity along (a)−(c) the a, b, and c directions at 300 K.

    图 7  AgBiSCl2的电输运参数与载流子浓度关系 (a), (d) 塞贝克系数; (b), (e) 电导率; (c), (f) 功率因子

    Fig. 7.  Electrical transport parameters of AgBiSCl2 as a function of carrier concentration: (a), (d) Seebeck coefficient; (b), (e) electrical conductivity; (c), (f) power factor.

    图 8  AgBiSCl2在(a) p型掺杂和(b) n型掺杂下的ZT

    Fig. 8.  ZT of AgBiSCl2 at different temperatures: (a) p-type doping; (b) n-type doping.

    表 1  AgBiSCl2空穴和电子的有效质量(m0 = 9.1 × 10–31 kg)

    Table 1.  Effective masses of holes and electrons of AgBiSCl2 (m0 = 9.1 × 10–31 kg).

    Carrier typemx/m0my/m0mz/m0
    h0.8730.8730.666
    e0.2740.2740.537
    下载: 导出CSV

    表 2  零频率下 AgBiSCl2 的介电常数、反射率与折射率

    Table 2.  Calculated zero-frequency dielectric constant, reflectivity, and refractive index of AgBiSCl2.

    ParametersabcAverage
    ε1(0)5.845.085.275.40
    R(0)0.170.150.150.16
    n(0)2.422.252.32.32
    下载: 导出CSV
  • [1]

    Kato D, Hongo K, Maezono R, Higashi M, Kunioku H, Yabuuchi M, Suzuki H, Okajima H, Zhong C, Nakano K, Abe R, Kageyama H 2017 J. Am. Chem. Soc. 139 18725Google Scholar

    [2]

    Luu S D N, Vaqueiro P 2016 J. Materiomics 2 131Google Scholar

    [3]

    Ghorpade U V, Suryawanshi M P, Green M A, Wu T, Hao X, Ryan K M 2023 Chem. Rev. 123 327Google Scholar

    [4]

    Kageyama H, Hayashi K, Maeda K, Attfield J P, Hiroi Z, Rondinelli J M, Poeppelmeier K R 2018 Nat. Commun. 9 772Google Scholar

    [5]

    Gibson Q D, Zhao T, Daniels L M, Walker H C, Daou R, Hébert S, Zanella M, Dyer M S, Claridge J B, Slater B, Gaultois M W, Corà F, Alaria J, Rosseinsky M J 2021 Science 373 1017Google Scholar

    [6]

    Majhi K, Pal K, Lohani H, Banerjee A, Mishra P, Yadav A K, Ganesan R, Sekhar B R, Waghmare U V, Anil Kumar P S 2017 Appl. Phys. Lett. 110 162102Google Scholar

    [7]

    Qiu W J, Xi L L, Wei P, Ke X Z, Yang J H, Zhang W Q 2014 PNAS 111 15031Google Scholar

    [8]

    Xie L, Feng J H, Li R, He J Q 2020 Phys. Rev. Lett. 125 245901Google Scholar

    [9]

    Ruck M, Poudeu Poudeu P F, Söhnel T 2004 Z. Anorg. Allg. Chem. 630 63Google Scholar

    [10]

    Quarta D, Toso S, Fieramosca A, Dominici L, Caliandro R, Moliterni A, Tobaldi D M, Saleh G, Gushchina I, Brescia R, Prato M, Infante I, Cola A, Giannini C, Manna L, Gigli G, Giansante C 2023 Chem. Mater. 35 9900Google Scholar

    [11]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [12]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [13]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [14]

    Heyd J, Peralta J E, Scuseria G E, Martin R L 2005 J. Chem. Phys. 123 174101Google Scholar

    [15]

    Saha S, Sinha T P, Mookerjee A 2000 J. Phys. Condens. Matter 12 3325Google Scholar

    [16]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [17]

    Ganose A M, Park J, Faghaninia A, Woods-Robinson R, Persson K A, Jain A 2021 Nat. Commun. 12 2222Google Scholar

    [18]

    Ramawat S, Kukreti S, Dixit A 2023 Phys. Rev. Materials 7 085403Google Scholar

    [19]

    Natarajan A R, Gupta M K, Mittal R, Kanchana V 2023 Mater. Today Commun. 34 105309Google Scholar

    [20]

    Rode D L 1975 Semiconductors and Semimetals (Elsevier) pp1–89

    [21]

    Tadano T, Tsuneyuki S 2015 Phys. Rev. B 92 054301Google Scholar

    [22]

    Tadano T, Gohda Y, Tsuneyuki S 2014 J. Phys.: Condens. Matter. 26 225402Google Scholar

    [23]

    Zhou F, Sadigh B, Åberg D, Xia Y, Ozoliņš V 2019 Phys. Rev. B 100 184309Google Scholar

    [24]

    Ju Z, Ma D K, Chang Z 2025 Phys. Rev. B 111 134302Google Scholar

    [25]

    Zheng J Z, Lin C P, Lin C J, Hautier G, Guo R Q, Huang B L 2024 npj Comput. Mater. 10 30Google Scholar

    [26]

    Xie Q Y, Xiao F, Zhang K W, Wang B T 2024 Phys. Rev. B 110 045203Google Scholar

    [27]

    Xiao F, Xie Q Y, Ming X, Li H, Zhang J R, Wang B T 2024 Phys. Rev. B 109 245202Google Scholar

    [28]

    Xie Q Y, Ma J J, Liu Q Y, Liu P F, Zhang P, Zhang K W, Wang B T 2022 Phys. Chem. Chem. Phys. 24 7303Google Scholar

    [29]

    Simoncelli M, Marzari N, Mauri F 2019 Nat. Phys. 15 809Google Scholar

    [30]

    Simoncelli M, Marzari N, Mauri F 2022 Phys. Rev. X 12 041011Google Scholar

    [31]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

    [32]

    Hao Y Z, Che J W, Wang X Y, Li X J, Lookman T, Sun J, Ding X D, Gao Z B 2025 Phys. Rev. B 111 195207Google Scholar

    [33]

    Cutler M, Leavy J F, Fitzpatrick R L 1964 Phys. Rev. 133 A1143Google Scholar

    [34]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [35]

    Zhu C, Liu Y, Wang D, Zhu Z, Zhou P, Tu Y, Yang G, Chen H, Zang Y, Du J, Yan W 2024 Cell Rep. Phys. Sci. 5 102321Google Scholar

    [36]

    Basera P, Bhattacharya S 2022 J. Phys. Chem. Lett. 13 6439Google Scholar

    [37]

    Xia Y, Ozoliņš V, Wolverton C 2020 Phys. Rev. Lett. 125 085901Google Scholar

    [38]

    Tadano T, Saidi W A 2022 Phys. Rev. Lett. 129 185901Google Scholar

    [39]

    Li W, Mingo N 2014 Phys. Rev. B 89 184304Google Scholar

    [40]

    Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R H, Iversen B B 2008 Nature Mater 7 811Google Scholar

    [41]

    Allen P B, Feldman J L 1989 Phys. Rev. Lett. 62 645Google Scholar

    [42]

    Zheng J Z, Shi D L, Yang Y W, Lin C J, Huang H, Guo R Q, Huang B L 2022 Phys. Rev. B 105 224303Google Scholar

    [43]

    郑建军, 张丽萍 2023 物理学报 72 086301Google Scholar

    Zheng J J, Zhang L P 2023 Acta Phys. Sin. 72 086301Google Scholar

    [44]

    Chen X K, Zhu J, Qi M, Jia P Z, Xie Z X 2025 Phys. Rev. Appl. 23 034085Google Scholar

  • [1] 张翠萍, 朱金峰, 沈晓玲, 舒明方, 任清勇, 马杰. 中子散射技术在Zintl相化合物热导率研究中的应用. 物理学报, 2025, 74(1): 017301. doi: 10.7498/aps.74.20241163
    [2] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [3] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根. 二维黑磷的光学性质. 物理学报, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [4] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [5] 魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. 低维纳米材料热电性能测试方法研究. 物理学报, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [6] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质. 物理学报, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [7] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究. 物理学报, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [8] 孙智征, 荀威, 张加永, 刘传洋, 仲嘉霖, 吴银忠. 钛酸钡的光学性质及其体积效应. 物理学报, 2019, 68(8): 087801. doi: 10.7498/aps.68.20182087
    [9] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [10] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响. 物理学报, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [11] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应. 物理学报, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [12] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [13] 冯现徉, 逯瑶, 蒋雷, 张国莲, 张昌文, 王培吉. In掺杂ZnO超晶格光学性质的研究. 物理学报, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [14] 孙中华, 王红艳, 张志东, 张中月. 金纳米环结构的光学性质研究. 物理学报, 2011, 60(4): 047808. doi: 10.7498/aps.60.047808
    [15] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究. 物理学报, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [16] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [17] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [18] 关 丽, 刘保亭, 李 旭, 赵庆勋, 王英龙, 郭建新, 王书彪. 萤石结构TiO2的电子结构和光学性质. 物理学报, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [19] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质. 物理学报, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [20] 伞海生, 李 斌, 冯博学, 何毓阳, 陈 冲. 由缺陷引起的Burstein-Moss和带隙收缩效应对CdIn2O4透明导电薄膜光带隙的影响. 物理学报, 2005, 54(2): 842-847. doi: 10.7498/aps.54.842
计量
  • 文章访问数:  614
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-18
  • 修回日期:  2025-07-17
  • 上网日期:  2025-08-08
  • 刊出日期:  2025-09-20

/

返回文章
返回