搜索

x
中国物理学会期刊

碳离子穿过氢等离子体的电荷态演化理论研究

CSTR: 32037.14.aps.74.20250668

Theoretical study on charge-state evolution of carbon ions passing through hydrogen plasma

CSTR: 32037.14.aps.74.20250668
PDF
HTML
导出引用
  • 本文基于截面模型系统研究了碳离子与氢等离子体相互作用的电荷态演化行为. 首先探究了在碳离子入射能为1\text keV/u—100\text MeV/u、氢等离子体的电子温度为kT_\texte = 1\text—1000\text eV范围内引入“shift”麦克斯韦速率分布对双电子复合速率系数影响的规律, 首次给出该体系下的速率系数数据. 在此基础上具体求解了在炮弹碳离子的能量为0.5\text MeV/u、等离子体自由电子温度为 kT_\texte=3和8\text eV 、电子密度为N_\texte = 10^18\text—10^20\text cm^- 3的情况下包含各种电离及复合过程的平衡速率方程, 给出了碳离子穿过氢等离子体的非平衡和平衡电荷态丰度随等离子体厚度的演化关系, 揭示了等离子体状态(温度、密度), 炮弹离子能量及初始电荷态对炮弹离子电荷态演化的调控机制. 进一步, 通过对比碳离子在氢等离子体与中性气体(氢气)中的动力学行为差异, 阐明了等离子体环境对离子电荷交换的独特影响. 本研究将对高能量密度物理领域中离子与等离子体相互作用的动力学演化及能量输运特性的研究具有重要参考作用.

     

    In this paper, the charge state evolution behavior of carbon ions interacting with hydrogen plasma is systematically investigated based on a cross-sectional model. First, the influence of introducing a “shifted” Maxwellian velocity distribution on the dielectronic recombination rate coefficients is investigated within the range of carbon ion incident energies from 1 keV/u to 100 MeV/u and hydrogen plasma electron temperatures of kT_\texte = 1–1000 eV. The rate coefficient data for this system are provided. On this basis, this research specifically solves the equilibrium rate equations by taking into account various ionization and recombination processes for projectile carbon ions with an energy of 0\text.5 MeV/u, plasma electron temperatures of kT_\texte = 3\text eV and \text8 eV, and electron densities ranging from 10^18\text c\textm^ - 3 to 10^20\text c\textm^ - 3. The results show that the abundance of both non-equilibrium and equilibrium charge states of carbon ions passing through hydrogen plasma varies with plasma thickness, revealing how plasma conditions such as temperature and density, along with projectile ion energy and initial charge states, influence the evolution of the ion charge states. Furthermore, a comparison of the dynamic behaviors of carbon ions in hydrogen plasma and neutral gas (hydrogen) shows that the unique effects of the plasma environment on ion charge exchange are elucidated. The mean equilibrium charge state of projectile ions exhibits a positive correlation with electron temperature and a negative correlation with electron density. It is particularly important that the calculated equilibrium charge states in hydrogen gas targets are notably lower than those in plasma environments. As the initial charge state of projectile ions approaches its equilibrium value, the equilibrium thicknesses for all charge states demonstrate a decreasing trend, accompanied by a corresponding reduction in the mean equilibrium thickness. This phenomenon is consistently verified in both plasma and gas targets, with the mean equilibrium thickness values in gas targets being significantly smaller than those in plasma environments. Most importantly, when the initial charge state of projectile ions exceeds the equilibrium value, these ions display more pronounced energy loss characteristics in non-equilibrium regions. This study will provides important references for investigating the dynamic evolution and energy transport characteristics of ion-plasma interactions in the field of high-energy-density physics.

     

    目录

    /

    返回文章
    返回