-
本文利用正弦交流电压激励液体电极放电系统, 通过增大液体电导率(σ), 发现放电从均匀模式过渡为斑图模式, 且斑图模式中依次在液面观察到了齿轮、锯盘、离散点、单臂螺旋和同心圆环等结构. 放电的电压电流波形表明放电仅发生在电压的负半周期(液体作瞬时阳极), 气体击穿后放电电流迅速增大并很快达到峰值然后缓慢减小. 对于均匀模式, 放电电流的减小是单调的; 但对于斑图模式, 放电电流在减小过程中存在一段几乎不随时间变化的平台阶段. 此外, 随σ升高, 峰值电流和平台电流均增大, 且放电击穿时刻提前. 利用增强型电荷耦合设备拍摄了均匀模式和斑图模式在液面附近的时间演化行为, 发现不论何种放电模式最初液面上均产生的是均匀圆盘, 而各种非均匀的斑图是产生在平台阶段. 基于反应-扩散模型, 通过改变离子强度与电流强度(对应变量m和l)对均匀模式和斑图模式进行了数值仿真, 获得了实验对应的放电模式. 此外, 采集了液面附近放电的发射光谱, 计算了与电子温度和电子密度相关的谱线强度比. 通过对光谱进行拟合, 获得了液面附近放电的气体温度和分子振动温度. 研究发现这些等离子体参数随σ的增大(对应着放电模式的变化)而升高.A liquid-electrode discharge system excited by an alternating-current sinusoidal voltage is employed to investigate the discharge modes with varying liquid conductivity (σ). The results indicate that with σ increasing, the discharge transitions from the uniform mode to the pattern mode, which undergoes various self-organized patterns such as gear, circular saw, discrete spots, single-arm spiral, and concentric rings on the liquid surface. The voltage and current waveforms reveal that the discharge occurs only in the negative half-cycle of applied voltage (when the liquid acts as the instantaneous anode). After gas breakdown, the discharge current rises rapidly to a peak, and then slowly decreases. For the uniform mode, the current decreases monotonically. However, during the current decreasing in the pattern mode, there appears a plateau in which the current keeps almost invariant with time. As σ increases, the values of the peak current and the plateau increase, and the breakdown moment advances. In addition, fast photographyachieved through an intensified charge-coupled device (ICCD) shows that regardless of the discharge mode, a uniform disk is initially generated on the liquid surface, and various non-uniform patterns are formed during the plateau stage. Based on the reaction-diffusion model, numerical simulations are carried out through changing ion strength and current strength, which are related to the variables m and l. The simulated discharge modes are well in line with those obtained in the experiments. Moreover, spectral line intensity ratios related to electron temperature and electron density are determined through the spectra emitted from the discharge near the liquid surface. By fitting the spectra, gas temperature and molecular vibration temperature are obtained, which show an increasing trend with σ increasing.
-
Keywords:
- liquid electrode discharge /
- self-organized patterns /
- alternating-current voltage driven /
- spatial-temporal evolution /
- reaction-diffusion model
-
图 2 曝光时间texp为0.25 ms, 溶液σ变化时(a)均匀模式和(b)—(f)斑图模式的照片, 其中(b)齿轮模式; (c)锯盘模式; (d)离散点模式; (e)单臂螺旋模式; (f)同心圆环模式
Fig. 2. Images of the uniform mode (a) and the self-organized patterns (b)–(f) with varying σ. Panel (b)–(f) correspond to (b) gear, (c) circular saw, (d) discrete spots, (e) single-arm spiral, and (f) concentric rings, respectively. The exposure time (texp) is 0.25 ms.
图 4 单次曝光ICCD(texp = 500 ns)拍摄液面上放电的时间演化图像(ICCD的门时刻在对应的电流波形中标注) (a) 均匀模式; (b) 齿轮模式; (c) 锯盘模式; (d) 离散点模式; (e) 单臂螺旋模式; (f) 同心圆环模式
Fig. 4. Single-shot ICCD images with texp of 500 ns for the discharges on the liquid surface: (a) The uniform mode; (b) gear pattern; (c) circular saw pattern; (d) discrete spots pattern; (e) single-arm spiral pattern; (f) concentric rings pattern. The gate moments of the ICCD are labelled in the corresponding current waveform.
图 6 (a) 300—800 nm扫描范围内来自于液体表面的发射光谱; (b) $ {\text{N}}_{2}^{+}{(}{\text{B}}^{2}{\text{∑}}_{\text{u}}^{+}\to{\text{X}}^{2}{\text{∑}}_{\text{g}}^{+}{)} $ 转动谱带拟合实例; (c), (d) Te与Ne (c)及Tv与Tg (d)随σ的变化
Fig. 6. (a) 300 to 800 nm scanned spectrum emitted from the discharge near the liquid surface; (b) experimental and simulated spectra of the first negative of $ {\text{N}}_{2}^{+}{(}{\text{B}}^{2}{\text{∑}}_{\text{u}}^{+}\to{\text{X}}^{2}{\text{∑}}_{\text{g}}^{+}{)} $; (c), (d) Te and Ne (c), Tv and Tg (d) as a function of σ.
-
[1] Bruggeman P, Leys C 2009 J. Phys. D: Appl. Phys. 42 053001
Google Scholar
[2] 李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程 2018 物理学报 67 075201
Google Scholar
Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y, Kang P C 2018 Acta Phys. Sin. 67 075201
Google Scholar
[3] Saifutdinov A I 2022 Plasma Sources Sci. Technol. 31 094008
Google Scholar
[4] Richmonds C, Sankaran R M 2008 Appl. Phys. Lett. 93 131501
Google Scholar
[5] Foster J E, Kovach Y E, Lai J, Garcia M C 2020 Plasma Sources Sci. Technol. 29 034004
Google Scholar
[6] Kovačević V V, Sretenović G B, Obradović B M, Kuraica M M 2022 J. Phys. D: Appl. Phys. 55 473002
Google Scholar
[7] 杨双越, 温小琼, 杨天元, 李霄 2024 物理学报 73 075203
Google Scholar
Yang S Y, Wen X Q, Yang Y T, Li X 2024 Acta Phys. Sin. 73 075203
Google Scholar
[8] Jamróz P, Gręda K, Pohl P, Żyrnicki W 2014 Plasma Chem Plasma Process. 34 25
Google Scholar
[9] Webb M R, Hieftje G M 2009 Anal. Chem. 81 862
Google Scholar
[10] Chen Q, Li J S, Li Y F 2015 J. Phys. D: Appl. Phys. 48 424005
Google Scholar
[11] Zheng P C, Liu K M, Wang J M, Dai Y, Yu B, Zhou X J, Hao H G, Luo Y 2012 Appl. Surf. Sci. 259 494
Google Scholar
[12] Chen Z T, Xu R G, Chen P J, Wang Q 2020 IEEE Trans. Plasma Sci. 48 3455
Google Scholar
[13] Liang J P, Zhao Z L, Zhou X F, Yang D Z, Yuan H, Wang W C, Qiao J J 2020 Vacuum 181 109644
Google Scholar
[14] Zhang S, Oehrlein G S 2021 J. Phys. D: Appl. Phys. 54 213001
Google Scholar
[15] Vanraes P, Bogaerts A 2021 J. Appl. Phys. 129 220901
Google Scholar
[16] Bruggeman P, Ribežl E, Maslani A, Degroote J, Malesevic A, Rego R, Vierendeels J, Leys C 2008 Plasma Sources Sci. Technol. 17 025012
Google Scholar
[17] Shirai N, Suga G, Sasaki K 2020 Plasma Sources Sci. Technol. 29 025007
Google Scholar
[18] Shirai N, Ichinose K, Uchida S, Tochikubo F 2011 Plasma Sources Sci. Technol. 20 034013
Google Scholar
[19] Bruggeman P, Liu J J, Degroote J, Kong M G, Vierendeels J, Leys C 2008 J. Phys. D: Appl. Phys. 41 215201
Google Scholar
[20] Xu S F, Zhong X X 2015 Phys. Plasmas 22 103519
Google Scholar
[21] Xu S F, Zhong X X 2016 Phys. Plasmas 23 010701
Google Scholar
[22] Jia P, Gao K, Zhou S, Chen J Y, Wu J C, Wu K Y, Li X C 2021 Plasma Sources Sci. Technol. 30 095021
Google Scholar
[23] Gao K, Wu K Y, Jia P Y, Jia B Y, Kang P C, Li X C 2019 Phys. Plasmas 26 113501
Google Scholar
[24] Zhang S Q, Dufour T 2018 Phys. Plasmas 25 073502
Google Scholar
[25] Rumbach P, Lindsay A E, Go D B 2019 Plasma Sources Sci. Technol. 28 105014
Google Scholar
[26] Shirai N, Ibuka S, Ishii S 2009 Appl. Phys. Express 2 036001
Google Scholar
[27] Yang Z M, Kovach Y, Foster J 2021 J. Appl. Phys. 129 163303
Google Scholar
[28] Verreycken T, Bruggeman P, Leys C 2009 J. Appl. Phys 105 083312
Google Scholar
[29] Shirai N, Uchida S, Tochikubo F 2014 Plasma Sources Sci. Technol. 23 054010
Google Scholar
[30] Li X C, Kang P C, Gao K, Zhou S, Wu K Y, Jia P Y 2020 Plasma Processes Polym. 17 1900223
Google Scholar
[31] Kovach Y E, Garcia M C, Foster J E 2021 Plasma Sources Sci. Technol. 30 015007
Google Scholar
[32] Li X C, Zhou S, Gao K, Ran J X, Wu K Y, Jia P Y 2022 IEEE Trans. Plasma Sci. 50 1717
Google Scholar
[33] Qin X R, Feng B W, Wang R Y, Ma Y P X, Zhang Q, Zhong X X 2024 Plasma Processes Polym. 21 2300055
Google Scholar
[34] Li X C, Geng J L, Jia P Y, Zhang P P, Zhang Q, Li Y R 2017 Phys. Plasmas 24 113504
Google Scholar
[35] Zheng P C, Wang X M, Wang J M, Yu B, Liu H D, Zhang B, Yang R 2014 Plasma Sources Sci. Technol. 24 015010
Google Scholar
[36] Srivastava T, Simeni M S, Nayak G, Bruggeman P J 2022 Plasma Sources Sci. Technol. 31 085010
Google Scholar
[37] Shirai N, Uchida S, Tochikubo F, Ishii S 2011 IEEE Trans. Plasma Sci. 39 2652
Google Scholar
[38] Chen Y F, Feng B W, Zhang Q, Wang R Y, Ostrikov K (Ken), Zhong X X 2020 Plasma Sci. Technol. 22 055404
Google Scholar
[39] Li J M, Zhang X, Tian S, Meng T T, Wan W J, Ran J X, Sun H, Jia P Y, Pang X X, Li X C 2025 Phys. Plasmas 32 032107
Google Scholar
[40] Ghimire B, Kolobov V I, Xu K G 2023 Phys. Scr. 98 095602
Google Scholar
[41] Wu J C, Jia P Y, Ran J X, Chen J Y, Zhang F R, Wu K Y, Zhao N, Ren C H, Yin Z Q, Li X C 2021 Phys. Plasmas 28 073501
Google Scholar
[42] Rajzer Y P 1997 Gas discharge physicst (Berlin Heidelberg: Springer) p167
[43] Purwins H G, Stollenwerk L 2014 Plasma Phys. Control. Fusion 56 123001
Google Scholar
[44] Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002
Google Scholar
[45] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照 2022 物理学报 71 240702
Google Scholar
Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022 Acta Phys. Sin. 71 240702
Google Scholar
[46] 李汉明, 李钢, 李英骏, 李玉同, 张翼, 程涛, 聂超群, 张杰 2008 物理学报 57 0969
Google Scholar
Li H M, Li G, Li Y J, Li Y T, Zhang Y, Cheng T, Nie C Q, Zhang J 2008 Acta Phys. Sin. 57 0969
Google Scholar
[47] 李雪辰, 常媛媛, 刘润甫, 赵欢欢, 狄聪 2013 物理学报 62 165205
Google Scholar
Li X C, Chang Y Y, Liu R F, Zhao H H, Di C 2013 Acta Phys. Sin. 62 165205
Google Scholar
[48] Belmonte T, Noël C, Gries T, Martin J, Henrion G 2015 Plasma Sources Sci. Technol. 24 064003
Google Scholar
[49] 张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰 2024 物理学报 73 085201
Google Scholar
Zhang X X, Jia P Y, Ran J X, Li J M, Sun H X, Li X C 2024 Acta Phys. Sin. 73 085201
Google Scholar
[50] Choi J H, Lee T I, Han I, Baik H K, Song K M, Lim Y S, Lee E S 2006 Plasma Sources Sci. Technol. 15 416
Google Scholar
[51] Liu Y D, Yan H J, Guo H F, Fan Z H, Wang Y Y, Wu Y, Ren C S 2018 Phys. Plasmas 25 033519
Google Scholar
[52] Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023 High Volt. 8 1161
Google Scholar
[53] Wu J C, Li X C, Ran J X, Jia H X, Wu K Y, Han G X, Liu J N, Chen J Y, Pang X X, Jia P Y 2023 Plasma Processes Polym. 20 2200188
Google Scholar
计量
- 文章访问数: 403
- PDF下载量: 3
- 被引次数: 0