搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交流电压激励液体电极放电中溶液电导率对放电模式的影响

李雪辰 张喜 朱国继 庞学霞 贾鹏英 孙辉 冉俊霞 李庆 李金懋

引用本文:
Citation:

交流电压激励液体电极放电中溶液电导率对放电模式的影响

李雪辰, 张喜, 朱国继, 庞学霞, 贾鹏英, 孙辉, 冉俊霞, 李庆, 李金懋

Influence of solution conductivity on discharge mode in alternating-current voltage driven liquid-electrode discharge

LI Xuechen, ZHANG Xi, ZHU Guoji, PANG Xuexia, JIA Pengying, SUN Hui, RAN Junxia, LI Qing, LI Jinmao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文利用正弦交流电压激励液体电极放电系统, 通过增大液体电导率(σ), 发现放电从均匀模式过渡为斑图模式, 且斑图模式中依次在液面观察到了齿轮、锯盘、离散点、单臂螺旋和同心圆环等结构. 放电的电压电流波形表明放电仅发生在电压的负半周期(液体作瞬时阳极), 气体击穿后放电电流迅速增大并很快达到峰值然后缓慢减小. 对于均匀模式, 放电电流的减小是单调的; 但对于斑图模式, 放电电流在减小过程中存在一段几乎不随时间变化的平台阶段. 此外, 随σ升高, 峰值电流和平台电流均增大, 且放电击穿时刻提前. 利用增强型电荷耦合设备拍摄了均匀模式和斑图模式在液面附近的时间演化行为, 发现不论何种放电模式最初液面上均产生的是均匀圆盘, 而各种非均匀的斑图是产生在平台阶段. 基于反应-扩散模型, 通过改变离子强度与电流强度(对应变量ml)对均匀模式和斑图模式进行了数值仿真, 获得了实验对应的放电模式. 此外, 采集了液面附近放电的发射光谱, 计算了与电子温度和电子密度相关的谱线强度比. 通过对光谱进行拟合, 获得了液面附近放电的气体温度和分子振动温度. 研究发现这些等离子体参数随σ的增大(对应着放电模式的变化)而升高.
    A liquid-electrode discharge system excited by an alternating-current sinusoidal voltage is employed to investigate the discharge modes with varying liquid conductivity (σ). The results indicate that with σ increasing, the discharge transitions from the uniform mode to the pattern mode, which undergoes various self-organized patterns such as gear, circular saw, discrete spots, single-arm spiral, and concentric rings on the liquid surface. The voltage and current waveforms reveal that the discharge occurs only in the negative half-cycle of applied voltage (when the liquid acts as the instantaneous anode). After gas breakdown, the discharge current rises rapidly to a peak, and then slowly decreases. For the uniform mode, the current decreases monotonically. However, during the current decreasing in the pattern mode, there appears a plateau in which the current keeps almost invariant with time. As σ increases, the values of the peak current and the plateau increase, and the breakdown moment advances. In addition, fast photographyachieved through an intensified charge-coupled device (ICCD) shows that regardless of the discharge mode, a uniform disk is initially generated on the liquid surface, and various non-uniform patterns are formed during the plateau stage. Based on the reaction-diffusion model, numerical simulations are carried out through changing ion strength and current strength, which are related to the variables m and l. The simulated discharge modes are well in line with those obtained in the experiments. Moreover, spectral line intensity ratios related to electron temperature and electron density are determined through the spectra emitted from the discharge near the liquid surface. By fitting the spectra, gas temperature and molecular vibration temperature are obtained, which show an increasing trend with σ increasing.
  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of the experimental setup.

    图 2  曝光时间texp为0.25 ms, 溶液σ变化时(a)均匀模式和(b)—(f)斑图模式的照片, 其中(b)齿轮模式; (c)锯盘模式; (d)离散点模式; (e)单臂螺旋模式; (f)同心圆环模式

    Fig. 2.  Images of the uniform mode (a) and the self-organized patterns (b)–(f) with varying σ. Panel (b)–(f) correspond to (b) gear, (c) circular saw, (d) discrete spots, (e) single-arm spiral, and (f) concentric rings, respectively. The exposure time (texp) is 0.25 ms.

    图 3  溶液σ变化时(不同放电模式)施加电压与放电电流的波形.

    Fig. 3.  Waveforms of applied voltage and discharge current with varying σ (different discharge modes).

    图 4  单次曝光ICCD(texp = 500 ns)拍摄液面上放电的时间演化图像(ICCD的门时刻在对应的电流波形中标注) (a) 均匀模式; (b) 齿轮模式; (c) 锯盘模式; (d) 离散点模式; (e) 单臂螺旋模式; (f) 同心圆环模式

    Fig. 4.  Single-shot ICCD images with texp of 500 ns for the discharges on the liquid surface: (a) The uniform mode; (b) gear pattern; (c) circular saw pattern; (d) discrete spots pattern; (e) single-arm spiral pattern; (f) concentric rings pattern. The gate moments of the ICCD are labelled in the corresponding current waveform.

    图 5  (a) 单次曝光ICCD (texp = 500 ns) 拍摄的均匀模式和斑图模式的照片; (b) 利用反应-扩散模型获得不同变量(lm)值的放电模式

    Fig. 5.  (a) Images of the uniform mode and the patterns captured by the ICCD with texp of 500 ns; (b) the discharge modes predicted by the reaction-diffusion model with different values of variables (l and m).

    图 6  (a) 300—800 nm扫描范围内来自于液体表面的发射光谱; (b) $ {\text{N}}_{2}^{+}{(}{\text{B}}^{2}{\text{∑}}_{\text{u}}^{+}\to{\text{X}}^{2}{\text{∑}}_{\text{g}}^{+}{)} $ 转动谱带拟合实例; (c), (d) TeNe (c)及TvTg (d)随σ的变化

    Fig. 6.  (a) 300 to 800 nm scanned spectrum emitted from the discharge near the liquid surface; (b) experimental and simulated spectra of the first negative of $ {\text{N}}_{2}^{+}{(}{\text{B}}^{2}{\text{∑}}_{\text{u}}^{+}\to{\text{X}}^{2}{\text{∑}}_{\text{g}}^{+}{)} $; (c), (d) Te and Ne (c), Tv and Tg (d) as a function of σ.

  • [1]

    Bruggeman P, Leys C 2009 J. Phys. D: Appl. Phys. 42 053001Google Scholar

    [2]

    李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程 2018 物理学报 67 075201Google Scholar

    Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y, Kang P C 2018 Acta Phys. Sin. 67 075201Google Scholar

    [3]

    Saifutdinov A I 2022 Plasma Sources Sci. Technol. 31 094008Google Scholar

    [4]

    Richmonds C, Sankaran R M 2008 Appl. Phys. Lett. 93 131501Google Scholar

    [5]

    Foster J E, Kovach Y E, Lai J, Garcia M C 2020 Plasma Sources Sci. Technol. 29 034004Google Scholar

    [6]

    Kovačević V V, Sretenović G B, Obradović B M, Kuraica M M 2022 J. Phys. D: Appl. Phys. 55 473002Google Scholar

    [7]

    杨双越, 温小琼, 杨天元, 李霄 2024 物理学报 73 075203Google Scholar

    Yang S Y, Wen X Q, Yang Y T, Li X 2024 Acta Phys. Sin. 73 075203Google Scholar

    [8]

    Jamróz P, Gręda K, Pohl P, Żyrnicki W 2014 Plasma Chem Plasma Process. 34 25Google Scholar

    [9]

    Webb M R, Hieftje G M 2009 Anal. Chem. 81 862Google Scholar

    [10]

    Chen Q, Li J S, Li Y F 2015 J. Phys. D: Appl. Phys. 48 424005Google Scholar

    [11]

    Zheng P C, Liu K M, Wang J M, Dai Y, Yu B, Zhou X J, Hao H G, Luo Y 2012 Appl. Surf. Sci. 259 494Google Scholar

    [12]

    Chen Z T, Xu R G, Chen P J, Wang Q 2020 IEEE Trans. Plasma Sci. 48 3455Google Scholar

    [13]

    Liang J P, Zhao Z L, Zhou X F, Yang D Z, Yuan H, Wang W C, Qiao J J 2020 Vacuum 181 109644Google Scholar

    [14]

    Zhang S, Oehrlein G S 2021 J. Phys. D: Appl. Phys. 54 213001Google Scholar

    [15]

    Vanraes P, Bogaerts A 2021 J. Appl. Phys. 129 220901Google Scholar

    [16]

    Bruggeman P, Ribežl E, Maslani A, Degroote J, Malesevic A, Rego R, Vierendeels J, Leys C 2008 Plasma Sources Sci. Technol. 17 025012Google Scholar

    [17]

    Shirai N, Suga G, Sasaki K 2020 Plasma Sources Sci. Technol. 29 025007Google Scholar

    [18]

    Shirai N, Ichinose K, Uchida S, Tochikubo F 2011 Plasma Sources Sci. Technol. 20 034013Google Scholar

    [19]

    Bruggeman P, Liu J J, Degroote J, Kong M G, Vierendeels J, Leys C 2008 J. Phys. D: Appl. Phys. 41 215201Google Scholar

    [20]

    Xu S F, Zhong X X 2015 Phys. Plasmas 22 103519Google Scholar

    [21]

    Xu S F, Zhong X X 2016 Phys. Plasmas 23 010701Google Scholar

    [22]

    Jia P, Gao K, Zhou S, Chen J Y, Wu J C, Wu K Y, Li X C 2021 Plasma Sources Sci. Technol. 30 095021Google Scholar

    [23]

    Gao K, Wu K Y, Jia P Y, Jia B Y, Kang P C, Li X C 2019 Phys. Plasmas 26 113501Google Scholar

    [24]

    Zhang S Q, Dufour T 2018 Phys. Plasmas 25 073502Google Scholar

    [25]

    Rumbach P, Lindsay A E, Go D B 2019 Plasma Sources Sci. Technol. 28 105014Google Scholar

    [26]

    Shirai N, Ibuka S, Ishii S 2009 Appl. Phys. Express 2 036001Google Scholar

    [27]

    Yang Z M, Kovach Y, Foster J 2021 J. Appl. Phys. 129 163303Google Scholar

    [28]

    Verreycken T, Bruggeman P, Leys C 2009 J. Appl. Phys 105 083312Google Scholar

    [29]

    Shirai N, Uchida S, Tochikubo F 2014 Plasma Sources Sci. Technol. 23 054010Google Scholar

    [30]

    Li X C, Kang P C, Gao K, Zhou S, Wu K Y, Jia P Y 2020 Plasma Processes Polym. 17 1900223Google Scholar

    [31]

    Kovach Y E, Garcia M C, Foster J E 2021 Plasma Sources Sci. Technol. 30 015007Google Scholar

    [32]

    Li X C, Zhou S, Gao K, Ran J X, Wu K Y, Jia P Y 2022 IEEE Trans. Plasma Sci. 50 1717Google Scholar

    [33]

    Qin X R, Feng B W, Wang R Y, Ma Y P X, Zhang Q, Zhong X X 2024 Plasma Processes Polym. 21 2300055Google Scholar

    [34]

    Li X C, Geng J L, Jia P Y, Zhang P P, Zhang Q, Li Y R 2017 Phys. Plasmas 24 113504Google Scholar

    [35]

    Zheng P C, Wang X M, Wang J M, Yu B, Liu H D, Zhang B, Yang R 2014 Plasma Sources Sci. Technol. 24 015010Google Scholar

    [36]

    Srivastava T, Simeni M S, Nayak G, Bruggeman P J 2022 Plasma Sources Sci. Technol. 31 085010Google Scholar

    [37]

    Shirai N, Uchida S, Tochikubo F, Ishii S 2011 IEEE Trans. Plasma Sci. 39 2652Google Scholar

    [38]

    Chen Y F, Feng B W, Zhang Q, Wang R Y, Ostrikov K (Ken), Zhong X X 2020 Plasma Sci. Technol. 22 055404Google Scholar

    [39]

    Li J M, Zhang X, Tian S, Meng T T, Wan W J, Ran J X, Sun H, Jia P Y, Pang X X, Li X C 2025 Phys. Plasmas 32 032107Google Scholar

    [40]

    Ghimire B, Kolobov V I, Xu K G 2023 Phys. Scr. 98 095602Google Scholar

    [41]

    Wu J C, Jia P Y, Ran J X, Chen J Y, Zhang F R, Wu K Y, Zhao N, Ren C H, Yin Z Q, Li X C 2021 Phys. Plasmas 28 073501Google Scholar

    [42]

    Rajzer Y P 1997 Gas discharge physicst (Berlin Heidelberg: Springer) p167

    [43]

    Purwins H G, Stollenwerk L 2014 Plasma Phys. Control. Fusion 56 123001Google Scholar

    [44]

    Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002Google Scholar

    [45]

    陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照 2022 物理学报 71 240702Google Scholar

    Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022 Acta Phys. Sin. 71 240702Google Scholar

    [46]

    李汉明, 李钢, 李英骏, 李玉同, 张翼, 程涛, 聂超群, 张杰 2008 物理学报 57 0969Google Scholar

    Li H M, Li G, Li Y J, Li Y T, Zhang Y, Cheng T, Nie C Q, Zhang J 2008 Acta Phys. Sin. 57 0969Google Scholar

    [47]

    李雪辰, 常媛媛, 刘润甫, 赵欢欢, 狄聪 2013 物理学报 62 165205Google Scholar

    Li X C, Chang Y Y, Liu R F, Zhao H H, Di C 2013 Acta Phys. Sin. 62 165205Google Scholar

    [48]

    Belmonte T, Noël C, Gries T, Martin J, Henrion G 2015 Plasma Sources Sci. Technol. 24 064003Google Scholar

    [49]

    张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰 2024 物理学报 73 085201Google Scholar

    Zhang X X, Jia P Y, Ran J X, Li J M, Sun H X, Li X C 2024 Acta Phys. Sin. 73 085201Google Scholar

    [50]

    Choi J H, Lee T I, Han I, Baik H K, Song K M, Lim Y S, Lee E S 2006 Plasma Sources Sci. Technol. 15 416Google Scholar

    [51]

    Liu Y D, Yan H J, Guo H F, Fan Z H, Wang Y Y, Wu Y, Ren C S 2018 Phys. Plasmas 25 033519Google Scholar

    [52]

    Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023 High Volt. 8 1161Google Scholar

    [53]

    Wu J C, Li X C, Ran J X, Jia H X, Wu K Y, Han G X, Liu J N, Chen J Y, Pang X X, Jia P Y 2023 Plasma Processes Polym. 20 2200188Google Scholar

  • [1] 田爽, 张寒, 张喜, 张雪雪, 李雪辰, 李庆, 冉俊霞. 双气隙下介质阻挡放电斑图的放电特性与参数诊断. 物理学报, doi: 10.7498/aps.74.20250111
    [2] 冉俊霞, 张寒, 陈沁怡, 周奕汛, 苏彤, 李庆, 李雪辰. 环-点阵-同心环斑图的放电演化机理及光谱诊断研究. 物理学报, doi: 10.7498/aps.74.20250737
    [3] 付强, 王聪, 王语菲, 常正实. 正弦交流电压驱动低气压CO2放电特性的对比: DBD结构与裸电极结构. 物理学报, doi: 10.7498/aps.71.20220086
    [4] 戴碧涛, 谭索怡, 陈洒然, 蔡梦思, 秦烁, 吕欣. 基于手机大数据的中国人口迁徙模式及疫情影响研究. 物理学报, doi: 10.7498/aps.70.20202084
    [5] 万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧. 大气压氦气介质阻挡放电单-多柱演化动力学. 物理学报, doi: 10.7498/aps.69.20200473
    [6] 张荣培, 王震, 王语, 韩子健. 反应扩散模型在图灵斑图中的应用及数值模拟. 物理学报, doi: 10.7498/aps.67.20171791
    [7] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, doi: 10.7498/aps.67.20172557
    [8] 司铁岩, 袁军华, 吴艺林, 唐建新. 细菌运动中的物理生物学. 物理学报, doi: 10.7498/aps.65.178703
    [9] 潘登, 郑应平. 路径约束条件下车辆行为的时空演化模型. 物理学报, doi: 10.7498/aps.64.078902
    [10] 贺亚峰, 冯晓敏, 张亮. 气体放电系统中时空斑图的时滞反馈控制. 物理学报, doi: 10.7498/aps.61.245204
    [11] 姜洪源, 李姗姗, 侯珍秀, 任玉坤, 孙永军. 非对称电极表面微观形貌对交流电渗流速的影响. 物理学报, doi: 10.7498/aps.60.020702
    [12] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究. 物理学报, doi: 10.7498/aps.58.4806
    [13] 严雄伟, 於海武, 曹丁象, 李明中, 郑建刚, 蒋东镔, 蒋新颖, 段文涛, 王明哲. 重频Yb:YAG片状激光器电光调Q时空演化模拟计算和实验研究. 物理学报, doi: 10.7498/aps.58.5798
    [14] 周海平, 蔡绍洪, 王春香. 含崩塌概率的一维沙堆模型的自组织临界性. 物理学报, doi: 10.7498/aps.55.3355
    [15] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, doi: 10.7498/aps.54.3268
    [16] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, doi: 10.7498/aps.54.4808
    [17] 尹增谦, 柴志方, 董丽芳, 李雪辰. 大气压氩气放电中的斑图形成. 物理学报, doi: 10.7498/aps.52.925
    [18] 全宏俊, 汪秉宏, 杨伟松, 王卫宁, 罗晓曙. 经纪人模仿在演化少数者博弈模型中引入的自组织分离效应. 物理学报, doi: 10.7498/aps.51.2667
    [19] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构. 物理学报, doi: 10.7498/aps.51.2296
    [20] 陈伟中, 魏荣爵. 双频激励液体表面斑图的Floquet分析. 物理学报, doi: 10.7498/aps.48.2259
计量
  • 文章访问数:  403
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-26
  • 修回日期:  2025-06-26
  • 上网日期:  2025-07-24

/

返回文章
返回