搜索

x
中国物理学会期刊

柔性斑块化纳米粒子在溶液中的自组装

CSTR: 32037.14.aps.74.20250797

Self-assembly of flexible patchy nanoparticles in solution

CSTR: 32037.14.aps.74.20250797
PDF
HTML
导出引用
  • 聚合物接枝纳米粒子的自组装在功能材料领域的应用越来越广泛. 然而, 目前对于不同自组装形貌结构的动态转变路径的分析仍存在不足, 这将导致在实验和工业生产中无法实现进一步的精确调节和定向设计. 本文通过构建聚合物接枝斑块化三分纳米颗粒的粗粒度模型, 采用耗散粒子动力学模拟方法, 研究了斑块性质、接枝链的长度、比例以及接枝密度等因素对聚合物接枝柔性斑块化纳米粒子自组装行为和结构的影响. 本文系统地探讨了这些因素对柔性斑块化纳米粒子自组装结构转变的影响和调控机制, 得到了枝状结构、柱状结构、双层膜结构等多种结构. 研究中所获得的柔性斑块化纳米粒子的自组装结构(例如双层膜结构)为新型药物载体的设计提供了潜在的应用基础. 通过精确调控体系的特定结构特征, 能够实现药物的高效包载以及靶向递送功能, 从而显著提升药物的生物利用度和治疗效果.

     

    The self-assembly of polymer grafted nanoparticles is more and more used in the field of functional materials. However, there is still a lack of analysis on the dynamic transformation paths of different self-assembly morphologies, which makes it impossible to achieve further precise regulation and targeted design in experiments and industrial production. In this work the effects of patchy property, grafted chain length, ratio and grafting density on the self-assembly behavior and structure of polymer grafted flexible patchy nanoparticles are investigated by dissipative particle dynamics simulation method through the construction of coarse-grained model of polymer grafted ternary nanoparticles. The influence and regulation mechanisms of these factors on the self-assembly structure transformation of flexible patchy nanoparticles are systematically studied, and a variety of structures such as dendritic structure, columnar structure, and bilayer membrane are obtained. The self-assembly structure of flexible patchy nanoparticles obtained in this work (such as bilayer membrane structure) provides a potential application basis for designing drug carriers. By precisely regulating the specific structural characteristics of the system, it is possible to achieve efficient loading of drugs and targeted delivery functions, thus significantly improving the bioavailability and effect of drugs.

     

    目录

    /

    返回文章
    返回