搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合并束冷碰撞的单量子态氦原子束研究

魏龙 杜小娇 温金录 董俊峰 孙羽 胡水明

引用本文:
Citation:

合并束冷碰撞的单量子态氦原子束研究

魏龙, 杜小娇, 温金录, 董俊峰, 孙羽, 胡水明

Preparation of single-quantum-state-selected helium for neutral atom-molecule merged-beams collisions

WEI Long, DU Xiaojiao, WEN Jinlu, DONG Junfeng, SUN Yu, HU Shui-Ming
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 量子态选择的低温原子分子反应动力学研究是从原子分子层面探究分子间及分子内的微观反应机理, 理解散射量子效应的关键研究手段之一. 合并束低温碰撞实验方法通过将一反应物偏转后与沿直线飞行的另一反应物发生共线碰撞, 获得毫开尔文量级的冷碰撞实验条件, 并开展毫开尔文至百开尔文碰撞能的反应动力学研究. 本文采用自主发展的永磁体“磁导”引导特定量子态的中性原子偏转后与分子束共线, 通过对氦原子穿过磁导的通量测量, 实验实现了三重态亚稳态23S1氦原子约10°角度偏转, 并制备了$ {M_J} = + 1 $ 磁子能级激发态氦原子. 本工作为发展亚稳态氦原子与分子低于开尔文量级的量子态选择激发态冷碰撞研究提供实验基础, 可以促进对激发态反应在星际介质演化中重要贡献的理解以及化学反应调控的研究. 本研究中发展的“磁导”也在原子速度滤波和冷原子输运等领域具有重要的应用前景.
    Studying low-temperature atomic and molecular reaction dynamics in quantum state selection is one of the key research methods for exploring the collision reaction mechanisms and revealing quantum effects in scattering processes. The merging beam collision experimental method is a powerful approach to achieving cold collisions of mK collision energy, by deflecting one reactant beam to collide with another reactant beam in a collinear manner.In this work, based on the Zeeman effect, the interaction between atomic magnetic moments and a magnetic field, a permanent-magnet “magnetic guide” system is developed to deflect metastable helium atom beams, with the aim of achieving collinear transport of neutral helium atoms and molecules in cold merged-beams collisions. Metastable helium atoms He(23S1) are produced through RF discharge. Utilizing this “magnetic guide”, the quantum-state-resolved neutral helium atoms (He(23S1), $ {M_J} = + 1 $) are prepared. Helium flux measurements demonstrate about 10°deflection of metastable helium atoms with a flux exceeding 106 atoms/s, accompanied by successful preparation of $ {M_J} = + 1 $ magnetic sublevel helium atoms. Furthermore, by combining the magnetic field measurements and magnetic force calculations for 23S1 metastable helium atom, the simulated trajectories propagating through the magnetic guide are analyzed.This work lays an experimental foundation for quantum-state-resolved cold collisions between excited-state helium and molecules below 1 K, advancing the understanding of cold reaction mechanisms governing the evolution of interstellar media and promoting chemical reaction control. The developed magnetic guidance technology in this study also has important application prospects in fields such as atomic velocity filtering and cold atom transport.In the future, optical pumping experimental methods will be employed to pump 23S1 helium atoms into the $ {M_J} = + 1 $ magnetic sublevel helium atoms, enhancing the population of single quantum state. Moreover, two-dimensional magneto-optical traps and optical molasses will be implemented to optimize beam, which is expected to further improve the beam flux of helium atoms.
  • 图 1  (a) 亚稳态氦原子束线平台示意图. 黑色虚线框内为合并束的永磁体“磁导”装置; (b) 氦原子能级结构图; (c) 磁导三维图

    Fig. 1.  (a) Schematic drawing of metestable helium atoms beam, dashed box is the “magnetic guide” system; (b) energy level diagram of helium atoms; (c) 3D schematic of the magnetic guide.

    图 2  激光系统部分的光路示意图(AMP, 放大器; LPF, 低通滤波器; PBS, 偏振分束镜; GT, 格兰泰勒棱镜; EOM, 电光调制器; LO, 本地振荡信号)

    Fig. 2.  Schematic drawing of optical layout. AMP, amplifier; LPF, low-pass filter; PBS, polarizing beam splitter; GT, Glan-Taylor prism; EOM, electro-optic modulator; LO, local oscillator.

    图 3  (a) 单个磁组件的结构示意图; (b) 单个磁组件的实物图; (c) 单个磁组件的径向磁场分布模拟结果

    Fig. 3.  (a) Schematic diagram of the magnetic assembly; (b) photograph of magnetic assembly; (c) simulated 2D magnetic field distribution.

    图 4  (a) 磁组件的一维径向磁场曲线图, 其中红色空心圆点为有限元模拟结果, 蓝色和黑色曲线为实验测量的磁场分布曲线; (b) 磁组件的径向磁场梯度分布

    Fig. 4.  (a) Radial magnetic field of the magnetic assembly, where red open circles denote the simulation results, and blue/black curves represent measured magnetic field; (b) radial magnetic field gradient of the magnetic assembly.

    图 5  800 m/s $ {M_J} = - 1 $磁子能级亚稳态氦原子在单个磁组件内的运动轨迹模拟

    Fig. 5.  Simulated trajectory of metastable helium atoms (23S1, $ {M_J} = - 1 $) propagating through the magnetic assembly at 800 m/s.

    图 6  800 m/s $ {M_J} = + 1 $磁子能级亚稳态氦原子穿过磁导的运动轨迹模拟

    Fig. 6.  Simulated trajectory of $ {M_J} = + 1 $ 23S1 metastable helium atoms propagating through the magnetic guide at 800 m/s.

  • [1]

    Herbst E, Yates J T 2013 Chem. Rev. 113 8707Google Scholar

    [2]

    Roueff E, Lique F 2013 Chem. Rev. 113 8906Google Scholar

    [3]

    Gerlich D, Jusko P, Roučka Š, Zymak I, Plašil R, Glosík J 2012 J. Astrophys. 749 22Google Scholar

    [4]

    Stuhl B K, Hummon M T, Ye J 2014 Annu. Rev. Phys. Chem. 65 501Google Scholar

    [5]

    Perreault W E, Mukherjee N, Zare R N 2017 Science 358 356Google Scholar

    [6]

    Amarasinghe C, Suits A G 2017 J. Phys. Chem. Lett. 8 5153Google Scholar

    [7]

    Ni K K, Ospelkaus S, Wang D, Quéméner G, Neyenhuis B, Miranda M H G De, Bohn J L, Ye J, Jin D S 2010 Nature 464 1324Google Scholar

    [8]

    Karman T, Tomza M, Pérez-Ríos J 2024 Nat. Phys. 20 722Google Scholar

    [9]

    Lavert-Ofir E, Shagam Y, Henson A B, Gersten S, Kłos J, Żuchowski P S, Narevicius J, Narevicius E 2014 Nat. Chem. 6 332Google Scholar

    [10]

    Yang T, Huang L, Xiao Ch, Chen J, Wang T, Dai D, Lique F, Alexander M H, Sun Zh, Zhang D H, Yang X, Neumark D M 2019 Nat. Chem. 11 744Google Scholar

    [11]

    Yang X, Zhang D H 2008 Acc. Chem. Res. 41 981Google Scholar

    [12]

    杨威, 孙大立, 周林, 王谨, 詹明生 2014 物理学报 63 153701Google Scholar

    Yang W, Sun D L, Zhou L, Wang J, Zhan M Sh 2014 Acta Phys. Sin. 63 153701Google Scholar

    [13]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558Google Scholar

    [14]

    Hutzler N R, Lu Hsin-I, Doyle J M 2012 Chem. Rev. 112 4803Google Scholar

    [15]

    Lemeshko M, Krems R V, Doyle J M, Kais S 2013 Mol. Phys. 111 1648Google Scholar

    [16]

    Egorov D, Lahaye T, Schöllkopf W, Friedrich B, Doyle J M, 2002 Phys. Rev. A 66 043401Google Scholar

    [17]

    Jongh T de, Besemer M, Shuai Q, Karman T, van der Avoird A, Groenenboom G C, van de Meerakker S Y T 2020 Science 6494 626

    [18]

    Qiu M, Ren Z, Che L, Dai D, Harich S A, Wang X, Yang X, Xu C, Xie D, Gustafsson M, Skodje R T, Sun Z, Zhang D H 2006 Science 311 1440Google Scholar

    [19]

    Yang T, Yang X 2006 Science 368 582

    [20]

    Henson A B, Gersten S, Shagam Y, Narevicius J, Narevicius E 2012 Science 338 234Google Scholar

    [21]

    Shagam Y, Narevicius E 2013 J. Phys. Chem. C 117 22454Google Scholar

    [22]

    Klein A, Shagam Y, Skomorowski W, Zuchowski P S, Pawlak M, Janssen L M C, Moiseyev N, van de Meerakker S Y T, van der Avoird A, Koch C P, Narevicius E 2017 Nat. Phys. 13 35Google Scholar

    [23]

    Shagam Y, Klein A, Skomorowski W, Yun R, Averbukh V, Koch C P, Narevicius E 2015 Nat. Chem. 7 921Google Scholar

    [24]

    Paliwal P, Deb N, Reich D M, van der Avoird Ad, Koch C P, Narevicius E 2021 Nat. Chem. 13 94

    [25]

    Jankunas J, Bertsche B, Osterwalder A 2014 J. Phys. Chem. A 118 3875Google Scholar

    [26]

    Gordon S D S, Omiste J J, Zou J, Tanteri S, Brumer P, Osterwalder A 2018 Nat. Chem. 10 1190Google Scholar

    [27]

    Harada Y, Masuda S, Ozaki H 1997 Chem. Rev. 97 1897Google Scholar

    [28]

    Kishimoto N, Oda T, Ohno K 2024 J. Electron. Spectrosc. Relat. Phenom. 137 319

    [29]

    Yamakita Y, Ohno K 2009 J. Phys. Chem. A 113 10779

    [30]

    Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, G. Drake W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376 199Google Scholar

    [31]

    Chen J J, Sun Y R, Wen J L, Hu S M 2020 Phys. Rev. A 101 053824Google Scholar

    [32]

    Even U 2015 EPJ Tech. Instrum. 2 17Google Scholar

    [33]

    孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明 2012 物理学报 61 170601Google Scholar

    Sun Y, Feng G P, Cheng C F, Tu L Y, Pan H, Yang G M, Hu S M 2012 Acta Phys. Sin. 61 170601Google Scholar

    [34]

    Cheng C F, Jiang W, Yang G M, Sun Y R, Pan H, Gao Y, Liu A W, Hu S M 2010 Rev. Sci. Instrum. 81 123106Google Scholar

    [35]

    陈娇娇, 孙羽, 温金录, 胡水明 2021 物理学报 70 133201Google Scholar

    Chen J J, Sun Y, Wen J L, Hu S M 2021 Acta Phys. Sin. 70 133201Google Scholar

  • [1] 杜小娇, 魏龙, 孙羽, 胡水明. 自由电子激光制备高强度亚稳态氦原子和类氦离子. 物理学报, doi: 10.7498/aps.73.20240554
    [2] 赖赣平, 张晓卫. 考虑原子亚稳态的镥金属蒸发过程模拟研究. 物理学报, doi: 10.7498/aps.72.20230602
    [3] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞. 物理学报, doi: 10.7498/aps.71.20211308
    [4] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流. 物理学报, doi: 10.7498/aps.70.20201833
    [5] 管勇, 刘丹丹, 王心亮, 张辉, 施俊如, 白杨, 阮军, 张首刚. 绝热跃迁方法测量铯喷泉钟冷原子碰撞频移. 物理学报, doi: 10.7498/aps.69.20191800
    [6] 杨欢, 张穗萌, 邢玲玲, 吴兴举, 赵敏福. 电子垂直入射电离氦原子碰撞机理的理论研究. 物理学报, doi: 10.7498/aps.66.073401
    [7] 徐润东, 刘文良, 武寄洲, 马杰, 肖连团, 贾锁堂. 磁光阱中超冷钠-铯原子碰撞的实验研究. 物理学报, doi: 10.7498/aps.65.093201
    [8] 韩玉龙, 张侃, 凤尔银, 黄武英. Mg-CO(X1Σ+)体系的冷碰撞动力学. 物理学报, doi: 10.7498/aps.64.103402
    [9] 刁文婷, 何军, 刘贝, 王杰英, 王军民. 利用蓝失谐激光诱导微型光学偶极阱中冷原子间的光助碰撞提高单原子制备概率. 物理学报, doi: 10.7498/aps.63.023701
    [10] 何寿杰, 哈静, 刘志强, 欧阳吉庭, 何锋. 流体-亚稳态原子传输混合模型模拟空心阴极放电特性. 物理学报, doi: 10.7498/aps.62.115203
    [11] 陈展斌, 刘丽娟, 董晨钟. 64.6 eV电子碰撞电离氦原子(e, 2e)反应的理论研究. 物理学报, doi: 10.7498/aps.61.143401
    [12] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱. 物理学报, doi: 10.7498/aps.61.170601
    [13] 许忻平, 张海潮, 王育竹. 一种实现冷原子束聚集的微磁透镜新方案. 物理学报, doi: 10.7498/aps.61.223701
    [14] 臧华平, 李文峰, 令狐荣锋, 程新路, 杨向东. 20 Ne(34 Ne)原子与18 Na2(23 Na2,37 Na2)分子低温下冷碰撞的同位素效应研究. 物理学报, doi: 10.7498/aps.60.050303
    [15] 冯进钤, 徐伟. Duffing单边碰撞系统的混沌鞍合并激变. 物理学报, doi: 10.7498/aps.60.080502
    [16] 程存峰, 杨国民, 蒋蔚, 潘虎, 孙羽, 刘安雯, 成国胜, 胡水明. 激光冷却获得高亮度的亚稳态惰性气体原子束和原子阱. 物理学报, doi: 10.7498/aps.60.103701
    [17] 杨宁选, 蒋 军, 颉录有, 董晨钟. Breit相互作用对类氦离子亚稳态1s2s 3S1电子碰撞激发截面的影响. 物理学报, doi: 10.7498/aps.57.2888
    [18] 刘春雷, 何 斌, 颜 君, 王建国. O3+与氦原子碰撞过程的CTMC计算. 物理学报, doi: 10.7498/aps.56.327
    [19] 沈异凡, 李万兴. 异核Na(3P)+Cs(6P)系统的碰撞能量合并. 物理学报, doi: 10.7498/aps.45.774
    [20] 沈异凡, 李万兴. 激发态钠原子间的碰撞能量合并. 物理学报, doi: 10.7498/aps.45.29
计量
  • 文章访问数:  306
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-21
  • 修回日期:  2025-07-23
  • 上网日期:  2025-07-25

/

返回文章
返回