搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼掺杂石墨烯/蓝磷异质结作为镁离子电池阳极的第一性原理研究

唐婧 范开敏 王坤 侯金瑛 史丹丹 东红

引用本文:
Citation:

硼掺杂石墨烯/蓝磷异质结作为镁离子电池阳极的第一性原理研究

唐婧, 范开敏, 王坤, 侯金瑛, 史丹丹, 东红

First-principles study of Boron-doped graphene/blue-phosphorus heterojunction as anode materials for magnesium-ion batteries

TANG Jing, FAN Kaimin, WANG Kun, HOU Jinying, SHI Dandan, DONG Hong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用基于密度泛函理论的第一性原理计算方法, 讨论了不同浓度硼(B)掺杂石墨烯/蓝磷异质结BiGr/BP (i = 0, 1, 2, 3, 4)的几何结构、稳定性、电子性质以及对镁(Mg)的吸附能力. 结果表明, B掺杂后, 异质结保持结构稳定, 费米能级下移且贯穿多条能带, 材料导电性增强. 随着掺杂浓度的增大, 材料对Mg的吸附能力逐渐增强. 当B掺杂浓度i = 4 (原子个数)时, B4Gr/BP保持热力学稳定, 展现出优异的导电性, 较强的Mg吸附能力(–3.38 eV), 较低的扩散势垒(0.47 eV), 理想的平均开路电压(0.37 V)以及合适的理论容量(286.04 mAh/g). 这表明, B掺杂能有效改善石墨烯/蓝磷(Gr/BP)储镁性能, 特别是B4Gr/BP性能优异, 有望成为镁离子电池阳极的候选材料.
    Magnesium-ion batteries (MIBs) are regarded as a promising alternative to lithium-ion batteries (LIBs) due to their material abundance, cost-effectiveness, and improved safety. The development of high-performance anode materials is crucial for the advancement of MIBs. In this work, the feasibility of boron-doped graphene/blue phosphorene heterojunctions BiGr/BP (i = 0, 1, 2, 3, 4) as potential anode materials for MIBs is systematically investigated using the density functional theory. Our results show that the average binding energies of BiGr/BP (i = 0, 1, 2, 3, 4) are negative, suggesting their suitability for experimental synthesis. The analyses of band structure and density of states reveal that BiGr/BP (i = 0, 1, 2, 3, 4) exhibit high conductivity, as the 2p orbitals of carbon and boron dominantly contribute to the density of states at the Fermi level. Magnesium (Mg) adsorption capacity rises with the increase of boron doping concentrations, indicating stronger interactions between the heterojunctions and Mg. At the highest doping concentration (i = 4), the adsorption energy of Mg adsorbed in the interlayer is –3.38 eV, demonstrating substantial potential for Mg storage. The ab initio molecular dynamics (AIMD) simulations at 300 K show minor fluctuations in total energy, confirming the thermal stability of B4Gr/BP. Climbing image nudged elastic band (CI-NEB) method is used to determine two diffusion pathways of Mg in the B4Gr/BP interlayer. Along Path II, the maximum diffusion barrier is 0.47 eV, suggesting rapid Mg diffusion in the B4Gr/BP interlayer. The average open-circuit voltage is 0.37 V, ensuring the safety of the charge-discharge process. The theoretical capacity is 286.04 mAh/g, which is twice that of the B4Gr/MoS2 system. In summary, boron doping significantly enhances the Mg storage capacity. Specifically, B4Gr/BP appears to be a promising candidate for high-performance anodes in MIBs, owing to its excellent stability, conductivity, Mg storage capacity, and electrochemical properties.
  • 图 1  (a) B0Gr/BP, (b) B1Gr/BP, (c) B2Gr/BP, (d) B3Gr/BP, (e) B4Gr/BP的几何结构图

    Fig. 1.  Geometric structure of (a) B0Gr/BP, (b) B1Gr/BP, (c) B2Gr/BP, (d) B3Gr/BP, (e) B4Gr/BP.

    图 2  AIMD模拟了300 K下的B4Gr/BP能量分布

    Fig. 2.  AIMD simulations of the energy profiles of B4Gr/BP at 300 K.

    图 3  (a) B0Gr/BP, (b) B1Gr/BP, (c) B2Gr/BP, (d) B3Gr/BP, (e) B4Gr/BP的能带图(左侧)和态密度图(右侧)

    Fig. 3.  Band structures (left panel) and DOS (right panel) of (a) B0Gr/BP, (b) B1Gr/BP, (c) B2Gr/BP, (d) B3Gr/BP, (e) B4Gr/BP.

    图 4  BiGr/BP(i = 0, 1, 2, 3, 4)上Mg的吸附位点俯视图(a)和侧视图(b)

    Fig. 4.  Top (a) and side (b) views of the Mg adsorption sites on the BiGr/BP (i = 0, 1, 2, 3, 4).

    图 5  (a) B0Gr/BP和(b) B4Gr/BP的差分电荷密度, 其中蓝色和黄色的区域分别代表电子耗尽和积累(等值面为 0.00015 e/Å3)

    Fig. 5.  Charge density difference of (a) B0Gr/BP and (b) B4Gr/BP. The blue and yellow regions represent electron depletion and accumulation, respectively(the isosurface value is 0.00015 e/Å3).

    图 6  (a) B0Gr/BP和(b) B4Gr/BP吸附Mg后的差分电荷密度, 其中蓝色和黄色的区域分别代表电子耗尽和积累(等值面为0.002 e/Å3)

    Fig. 6.  Charge density difference of Mg adsorbed in (a) B0Gr/BP and (b) B4Gr/BP. The blue and yellow regions represent electron depletion and accumulation, respectively (the isosurface value is 0.002 e/Å3).

    图 7  Mg在B4Gr/BP层间的扩散路径和扩散势垒 (a) 路径Ⅰ; (b) 路径Ⅱ

    Fig. 7.  Diffusion pathways and diffusion barriers of Mg in the interlayer: (a) Path Ⅰ; (b) Path Ⅱ.

    图 8  B4Gr/BP的开路电压

    Fig. 8.  Open circuit voltage of B4Gr/BP.

    表 1  BiGr/BP (i = 0, 1, 2, 3, 4)的平均结合能、晶格常数、层间距、键长和键角

    Table 1.  Average binding energies, lattice constants, interlayer distances, bond lengths and bond angles of BiGr/BP (i = 0, 1, 2, 3, 4).

    Systems Eb/(meV·atom–1) A d Bondtype Distance/Å Type Angle/(°)
    B0Gr/BP –24.98 9.86 3.57 C—C
    P—P
    1.42
    2.26
    ∠C—C—C
    ∠P—P—P
    119.98—120.01
    93.06—93.11
    B1Gr/BP –24.55 9.90 3.59 C—C
    C—B
    P—P
    1.41—1.44
    1.49
    2.27
    ∠C—C—C
    ∠C—B—C
    ∠P—P—P
    119.29—122.72
    120.00
    93.04—93.43
    B2Gr/BP –23.80 9.94 3.59 C—C
    C—B
    P—P
    1.41—1.45
    1.50
    2.27
    ∠C—C—C
    ∠C—B—C
    ∠P—P—P
    119.66—123.58
    119.96—119.99
    93.49—93.72
    B3Gr/BP –24.33 9.99 3.58 C—C
    C—B
    P—P
    1.41—1.45
    1.50—1.51
    2.28
    ∠C—C—C
    ∠C—B—C
    ∠P—P—P
    118.34—123.70
    119.51—120.83
    93.70—93.97
    B4Gr/BP –19.75 10.04 3.53 C—C
    C—B
    P—P
    1.40—1.44
    1.50
    2.28
    ∠C—C—C
    ∠C—B—C
    ∠P—P—P
    117.47—124.64
    119.85—120.04
    93.85—94.39
    下载: 导出CSV

    表 2  Mg在BiGr/BP (i = 0, 1, 2, 3, 4)层间和外表面不同吸附位点的吸附能(eV)

    Table 2.  Mg adsorption energies (eV) at the interlayer and outer surface of BiGr/BP (i = 0, 1, 2, 3, 4)

    SystemMg/BiGr/BPBiGr/BP/MgBiGr/Mg/BlueP
    HcTpT1T2T3T4T5
    B0Gr/BP–0.25–0.44–1.05–1.00–1.02–1.02–1.00
    B1Gr/BP–0.88–0.73–2.52–1.87–2.19–2.15–1.87
    B2Gr/BP–0.95–0.85–2.82–2.22–2.53–2.53–2.23
    B3Gr/BP–1.06–0.91–3.08–2.80–2.84–2.90–3.02
    B4Gr/BP–1.61–1.04–3.36–3.33–3.38–3.17–3.17
    下载: 导出CSV
  • [1]

    Chen W D, Liang J, Yang Z H, Li G 2019 Energy Proc. 158 4363Google Scholar

    [2]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [3]

    Lv C W, Qin M L, He Y P, Wu M Q, Zhu Q S, Wu S Y 2025 Solid State Ionics 423 116820Google Scholar

    [4]

    Durajski A P, Kasprzak G T 2023 Phys. B 660 414902Google Scholar

    [5]

    Wang Y Q, Yang Z, Song J Y 2025 Mol. Phys. 24 e2482678

    [6]

    刘立林 2022 硕士学位论文 (石家庄: 河北师范大学)

    Liu L L 2022 M. S. Thesis (Shijiazhuang: Hebei Normal University

    [7]

    Guo Q, Zeng W, Liu S L, Li Y Q, Xu J Y, Wang J X, Wang Y 2021 Rare Met. 40 290Google Scholar

    [8]

    李欣悦, 高国翔, 高强, 刘春生, 叶小娟 2024 物理学报 73 118201Google Scholar

    Li X Y, Gao G X, Gao Q, Liu C S, Ye X J 2024 Acta Phys. Sin. 73 118201Google Scholar

    [9]

    Raccichini R, Varzi A, Passerini S, B S 2015 Nat. Mater. 14 271Google Scholar

    [10]

    Qiu Z, Cao F, Pan G X, Li C, Chen M H, Zhang Y Q, He X P, Xia Y, Xia X H, Zhang W K 2023 ChemPhysMater 2 267Google Scholar

    [11]

    Zhang L J, Zhang T H, Wang C, Jin W, Li Y, Wang H, Ding C C, Wang Z Y 2025 Chem. Phys. 594 112664Google Scholar

    [12]

    Qi J Q, Li Q, Huang M Y, Ni J J, Sui Y W, Meng Q K, Wei F X, Zhu L, Wei W Q 2024 Colloids Surf. A Physicochem. Eng. Asp. 683 132998Google Scholar

    [13]

    Fan K M, Tang J, Wu S Y, Yang C F, Hao J B 2017 Phys. Chem. Chem. Phys. 19 267Google Scholar

    [14]

    Cheng J Y, Gao L F, Li T, Mei S, Wang C, Wen B, Huang W C, Li C, Zheng G P, Wang H, Zhang H 2020 Nano-Micro Lett. 12 179Google Scholar

    [15]

    Sibari A, Marjaoui A, Lakhal, Kerrami Z, Kara A, Benaissa M, Ennaoui A, Hamedoun M, Benyoussef A, Mounkachi O 2018 Sol. Energy Mater. Sol. Cells 180 253Google Scholar

    [16]

    Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 17 13921Google Scholar

    [17]

    Aierken Y, Cakir D, Sevik C, Peeters F M 2015 Phys. Rev. B 92 081408Google Scholar

    [18]

    Li Q F, Duan C G, Wan X G, Kuo J L 2015 J. Phys. Chem. C 119 8662Google Scholar

    [19]

    Liu H W, Zou Y Q, Tao L, Ma Z L, Liu D D, Zhou P, Liu H, Wang S Y 2017 Small 13 1700758Google Scholar

    [20]

    Kaddar Y, Zhang W, Enriquez H, Dappe Y J, Bendounan A, Dujardin G, Mounkachi O, El Kenz A, Benyoussef A, Kara A, Oughaddou H 2023 Adv. Funct. Mater. 33 2213664Google Scholar

    [21]

    Li Y, Wu W T, Ma F 2019 J. Mater. Chem. A 7 611Google Scholar

    [22]

    Mukherjee S, Kaloni T P 2012 J. Nano. Res. 14 1

    [23]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [24]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Steinmann S N, Corminboeuf C 2010 J. Chem. Theory Comput. 6 1990Google Scholar

    [28]

    Nosé S 2002 Mol. Phys. 100 191Google Scholar

    [29]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [30]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [31]

    Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91 115433Google Scholar

    [32]

    Suragtkhuu S, Bat-Erdene M, Bati A S R, Shapter J G, Davaasambuu S, Batmunkh M 2020 J. Mater. Chem. A 8 20446Google Scholar

    [33]

    Xiao J, Long M Q, Zhang X J, Ouyang J, Xu H, Gao Y L 2015 Sci. Rep. 5 9961Google Scholar

    [34]

    Bo T, Liu P F, Xu J P, Zhang J R, Chen Y B, Eriksson O, Wang F W, Wang B T 2018 Phys. Chem. Chem. Phys. 20 22168Google Scholar

    [35]

    Sun Z M, Yuan M W, Yang H, Lin L, Sun G B, Yang X J 2021 Appl. Surf. Sci. 543 148790Google Scholar

    [36]

    Pozzo M, Alfè D 2008 Phys. Rev. B 77 104103Google Scholar

    [37]

    Shomali E, Sarsari I A, Tabatabaei F, Mosaferi M, Seriani N 2019 Comput. Mater. Sci. 163 315Google Scholar

    [38]

    Obaidullah, Habiba U, Piya A A, Daula Shamim S U 2023 AIP Adv. 13 11

    [39]

    朱家铎 2025 博士学位论文 (西安: 西安电子科技大学)

    Zhu J D 2025 Ph. D. Dissertation (Xi'an: Xidian University

    [40]

    Zhang C M, Jiao Y L, He T W, Ma F X, Kou L Z, Liao T, Bottle S, Du A J 2017 Phys. Chem. Chem. Phys. 19 25886Google Scholar

    [41]

    Eames C, Islam M S. 2014 J. Am. Chem. Soc. 136 16270Google Scholar

  • [1] 李欣悦, 高国翔, 高强, 刘春生, 叶小娟. 二维BeB2作为镁离子电池阳极材料的理论研究. 物理学报, doi: 10.7498/aps.73.20240134
    [2] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究. 物理学报, doi: 10.7498/aps.69.20191799
    [3] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190575
    [4] 侯滨朋, 淦作亮, 雷雪玲, 钟淑英, 徐波, 欧阳楚英. 第一性原理对氮掺杂石墨烯作为锂-空电池阴极材料还原氧分子的机理研究. 物理学报, doi: 10.7498/aps.68.20190181
    [5] 孟凡顺, 赵星, 李久会. B掺入Cu∑5晶界间隙位性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.117102
    [6] 周鹏力, 史茹倩, 何静芳, 郑树凯. B-Al共掺杂3C-SiC的第一性原理研究. 物理学报, doi: 10.7498/aps.62.233101
    [7] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, doi: 10.7498/aps.62.103102
    [8] 林玲, 朱家杰, 方弘. 金属离子掺杂的Lu2Si2O7的第一性原理研究. 物理学报, doi: 10.7498/aps.62.147101
    [9] 夏中秋, 李蓉萍. 稀土掺杂CdTe太阳电池背接触层ZnTe的第一性原理研究. 物理学报, doi: 10.7498/aps.61.017108
    [10] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, doi: 10.7498/aps.60.037103
    [11] 袁娣, 罗华锋, 黄多辉, 王藩侯. Zn,O共掺杂实现p型AlN的第一性原理研究. 物理学报, doi: 10.7498/aps.60.077101
    [12] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源. 物理学报, doi: 10.7498/aps.60.027502
    [13] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.58.1917
    [14] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究. 物理学报, doi: 10.7498/aps.58.1901
    [15] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, doi: 10.7498/aps.58.8002
    [16] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究. 物理学报, doi: 10.7498/aps.58.7151
    [17] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算. 物理学报, doi: 10.7498/aps.57.1054
    [18] 陈 琨, 范广涵, 章 勇, 丁少锋. In-N共掺杂ZnO第一性原理计算. 物理学报, doi: 10.7498/aps.57.3138
    [19] 丁少锋, 范广涵, 李述体, 肖 冰. 氮化铟p型掺杂的第一性原理研究. 物理学报, doi: 10.7498/aps.56.4062
    [20] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.56.1585
计量
  • 文章访问数:  216
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-27
  • 修回日期:  2025-07-20
  • 上网日期:  2025-08-08

/

返回文章
返回