搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机分子结中激光脉冲诱导的瞬态响应性质研究

霍静怡 卢秋霞 张毛毛 刘晓静 安忠

引用本文:
Citation:

有机分子结中激光脉冲诱导的瞬态响应性质研究

霍静怡, 卢秋霞, 张毛毛, 刘晓静, 安忠

Transient transport properties induced by laser pulses in organic molecular junctions

HUO Jingyi, LU Qiuxia, ZHANG Maomao, LIU Xiaojing, AN Zhong
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 研究分子结中电流对入射激光脉冲的时间依赖响应是获取分子结构及其激发态信息的重要途径.本文构建了一个由金属电极/聚乙炔分子/金属电极构成的有机分子结,采用Su-Schrieffer-Heeger模型描述分子结构,结合非平衡格林函数方法和级联运动方程,求解了高斯型激光脉冲作用下分子结的瞬态响应特性.研究发现,激光脉冲的中心频率是影响瞬态电流响应特性的关键因素之一.仅当电子与光场发生共振时,才能引起大量电荷的激发.由于电子-声子耦合作用,被激发的电子引发晶格弛豫并形成激子态,导致能量转移,使得电流振幅显著增大,频谱中特征峰分布区域变宽.冻结晶格原子运动后,发现电流振幅减小,电流频谱变得简洁,验证了电子-声子耦合是分子结内光诱导电流的另一个关键因素.这些发现有助于理解分子对外部光刺激的动态响应机制,也为设计新型光电分子器件提供理论基础.
    The time-dependent response of transient current to incident laser pulses in molecular junctions is an important method to obtain information about molecular structures and excited-state dynamics. In this work, a theoretical study is carried out on the transient charge transport through a model polyacetylene molecular junction driven by Gaussian-type femtosecond laser pulses. The molecule is described by the extended Su-Schrieffer-Heeger model, which explicitly includes electron-phonon interactions and captures both electronic and lattice degrees of freedom. The transient transport dynamics are calculated by combining the non-equilibrium Green’s function formalism with the hierarchical equations of motion, allowing a fully non-adiabatic description of the coupled electron-lattice evolution.
    Results show that the central frequency of the incident laser pulse is one of the key factors that determines the transient current response. When electrons resonate with the optical field, the current amplitude is significantly enhanced, and the temporal profile becomes asynchronous with the laser field, indicating strong non-linear response. The corresponding current spectra exhibit broadened main peaks accompanied by multiple sidebands, suggesting the coexistence of various frequency components due to dynamic coupling between electrons and lattice vibrations.
    Further analysis of the evolution of instantaneous energy levels demonstrates that, under resonant excitation, electrons are efficiently excited from HOMO to LUMO. The excited electrons induce lattice relaxation through electron-phonon coupling, resulting in local structural distortion and the formation of self-trapped excitonic states. These excitonic effects lead to additional energy transfer channels, thus amplifying the current response and broadening the frequency spectrum.
    In contrast, when the lattice motion is artificially frozen, both the current amplitude and frequency broadening are greatly suppressed, and only a single sharp spectral peak corresponding to the laser frequency is observed. This comparison clearly demonstrates that electron-phonon coupling is a key factor governing the transient transport behavior in molecular junctions under optical excitation.
    The present study reveals the microscopic mechanism of light-induced transient transport in organic molecular junctions and highlights the essential role of lattice dynamics in modulating non-equilibrium charge transfer. These findings provide theoretical guidance for the design of novel optoelectronic molecular devices and contribute to the fundamental understanding of non-adiabatic transport processes in low-dimensional quantum systems.
  • [1]

    Akkerman H B, Blom P W M, Leeuw D M, Boer B, 2006 Nature 441, 69-72

    [2]

    Shekhawat A S, Krishnan N, Diwan A, Murugan D, Chithravel A, Daukiya L, Shrivastav A M, Srivastava T, Saxena S K, 2025 Nanoscale 17 8363

    [3]

    Xie Z X, Yu X, Jia P Z, Chen X K, Deng Y X, Zhang Y, Zhou W X, 2023 Acta Phys. Sin. 72 124401 (in Chinese) [谢忠祥,喻霞,贾聘真,陈学坤,邓元祥,张勇,周五星 2023 物理学报 72 124401]

    [4]

    Zhang H X, Zhu Y X, Duan P, Shiri M, Yelishala S C, Shen S C, Song Z Q, Jia C C, Guo X F, Cui L J, Wang K, 2024 Appl. Phys. Rev. 11 041312

    [5]

    Gao Q H, Zhang Z Z, Zhao C, Wang Z X, Huo Y N, Xiang D, Jia C C, Guo X F, 2024 Adv. Photonics 6 064002

    [6]

    Zhang Y, Wang L X, 2011 Acta Phys. Sin. 60 047304 (in Chinese) [张元,王鹿霞 2011 物理学报 60 047304]

    [7]

    Whalley A C, Steigerwald M L, Guo X F, Nuckolls C 2007 J. Am. Chem. Soc. 129 12590-12591

    [8]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443-1445

    [9]

    Xin N, Hu C, Sabea H A, Zhang M, Zhou C G, Meng L N, Jia C C, Gong Y, Li Y, Ke G J, He X Y, Selvanathan P, Norel L, Ratner M A, Liu Z R, Xiao S X, Rigaut S, Guo H, Guo X F 2021 J. Am. Chem. Soc. 143 20811-20817

    [10]

    Gao M X, Wu R M, Zhang Y W, Meng Y S, Fang M M, Yang J, Li Z 2025 J. Am. Chem. Soc. 147 2653-2663

    [11]

    Cao Y, Dong S H, Liu. S, Liu Z F, Guo X F 2013 Angew. Chem. Int. Ed. 52 3906-3910

    [12]

    Tan M, Sun F, Zhao X Y, Zhao Z B, Zhang S R, Xu X N, Adijiang A, Zhang W, Wang H Y, Wang C K, Li Z L, Scheer E, Xiang D 2024 J. Am. Chem. Soc. 146 6856-6865

    [13]

    Battacharyya S, Kibel A, Kodis G, Liddell P A, Gervaldo M, Gust D, Lindsay S

    [14]

    Zhou J F, Wang K, Xu B Q, Dubi Y 2018 J. Am. Chem. Soc. 140 70-73

    [15]

    Yoshida K, Shibata K, Hirakawa K, 2015 Phys. Rev. Lett. 115 138302

    [16]

    Zhao Z K, Guo C Y, Ni L F, Zhao X Y, Zhang S R, Xiang D 2021 Nanoscale Horiz. 6 386-392

    [17]

    Liu H J, Chen L J, Zhang H, Yang Z Q, Ye J Y, Zhou P, Fang C, Xu W, Shi J, Liu J Y, Yang Y, Hong W J 2023 Nat. Mater. 22 1007-1012

    [18]

    Lee S, Kim T, Kim H, Kim Y 2021 ACS Appl. Polym. Mater. 3 6056-6062

    [19]

    Park C, Kim T, Kim H, Kim Y 2024 J. Mater. Chem. C 12 16543-16550

    [20]

    Galperin M, Nitzan A 2005 Phys. Rev. Lett. 95 206802

    [21]

    Galperin M, Nitzan A 2006 J. Chem. Phys. 124 234709

    [22]

    FainbergB D, Jouravlev M, Nitzan A 2007 Phys. Rev. B 76 245329

    [23]

    FainbergB D, Sukharev M, Park T H, Galperin M 2011 Phys. Rev. B 83 205425

    [24]

    Cao H, Zhang M D, Tao T, Song M X, Zhang C Z 2015 J. Chem. Phys. 142 084705

    [25]

    Beltako K, Cavassilas N, Lannoo M, Michelini F 2019 J. Phys. Chem. C 123 30885-30892

    [26]

    Selzer Y, Peskin U 2013 J. Phys. Chem. C 117 22369-22376

    [27]

    Hao Y T, Lu Q X, Zhang Y L, Zhang M M, Liu X J, An Z 2024 J. Chem. Phys. 160 184113

    [28]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698-1701

    [29]

    Brazovskii S A, Kirova N N 1980 JETP Lett. 33 4

    [30]

    Zhang M M, Lu Q X, Liu X J, Gao K, An Z Appl. Phys. Lett. 2023 123 151102

    [31]

    Zhang D C, Zuo L J, Ye L, Chen Z H, Wang Y, Xu R X, Zheng X, Yan Y J 2023 J. Chem. Phys. 158 014106

    [32]

    Li Z H, Tong N H, Zheng X, Hou D, Wei J H, Hu J, Yan Y J 2012 Phys. Rev. Lett. 109 266403

    [33]

    Jin J H, Zheng X, Yan Y J 2008 J. Chem. Phys. 128 234703

    [34]

    Kubis T, Vogl P 2011 Phys. Rev. B 83 19530

    [35]

    Nano Lett. 11 2709-2714

  • [1] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20240026
    [2] 刘哲, 魏浩, 崔海航, 孙锴, 孙博华. 基于声子水动力学方程分析全环绕栅极晶体管的瞬态热输运过程. 物理学报, doi: 10.7498/aps.73.20240491
    [3] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学. 物理学报, doi: 10.7498/aps.69.20191816
    [4] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, doi: 10.7498/aps.68.20191154
    [5] 牛璐, 王鹿霞. 外场对分子纳米结电流-电压特性的影响. 物理学报, doi: 10.7498/aps.67.20171604
    [6] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究. 物理学报, doi: 10.7498/aps.67.20180689
    [7] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质. 物理学报, doi: 10.7498/aps.64.097201
    [8] 郭春生, 王琳, 翟玉卫, 李睿, 冯士维, 朱慧. 瞬态大电流测量结温中校温曲线弯曲现象的研究. 物理学报, doi: 10.7498/aps.64.184704
    [9] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算. 物理学报, doi: 10.7498/aps.63.177304
    [10] 王孟舟, 姜永恒, 刘天元, 孙成林, 里佐威. 络合物形成对电子-声子耦合的影响. 物理学报, doi: 10.7498/aps.62.187802
    [11] 朱丽丹, 孙方远, 祝捷, 唐大伟. 飞秒激光抽运探测热反射法对金属纳米薄膜超快非平衡传热的研究. 物理学报, doi: 10.7498/aps.61.134402
    [12] 张元, 王鹿霞. 红外光激发作用下分子导电纳米结的非弹性电流研究. 物理学报, doi: 10.7498/aps.60.047304
    [13] 马维刚, 王海东, 张兴, 王玮. 飞秒脉冲激光加热金属薄膜的理论和实验研究. 物理学报, doi: 10.7498/aps.60.064401
    [14] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, doi: 10.7498/aps.59.7291
    [15] 殷菲, 胡伟达, 全知觉, 张波, 胡晓宁, 李志锋, 陈效双, 陆卫. 激光束诱导电流法提取HgCdTe光伏探测器的电子扩散长度. 物理学报, doi: 10.7498/aps.58.7884
    [16] 马 荣, 黄桂芹, 刘 楣. 三元硅化物CaAlSi的结构和超导电性. 物理学报, doi: 10.7498/aps.56.4960
    [17] 李英德. 分子结电学特性的理论研究. 物理学报, doi: 10.7498/aps.55.2997
    [18] 李英德, 李红海, 王传奎. 分子线的电子输运特性. 物理学报, doi: 10.7498/aps.51.2349
    [19] 崔执凤, 陈 东, 凤尔银, 季学韩, 陆同兴, 李学初. 激光诱导NO2分子500—532nm区荧光激发谱的实验研究. 物理学报, doi: 10.7498/aps.49.2151
    [20] 雷啸霖, 丁秦生. 非线性电子输运中声学和光学声子的联合散射效应. 物理学报, doi: 10.7498/aps.34.983
计量
  • 文章访问数:  51
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-14

/

返回文章
返回