搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微牛级会切霍尔推力器模式转换研究

吴嘉浩 曾明 刘辉 于达仁

引用本文:
Citation:

微牛级会切霍尔推力器模式转换研究

吴嘉浩, 曾明, 刘辉, 于达仁

Research on Mode Transition of Micro-Newton Cusped Field Hall Thruster

WU Jiahao, ZENG Ming, LIU Hui, YU Daren
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 微牛级会切霍尔推力器是一种微波辅助电离调控的电推进装置,作为无拖曳控制系统的执行机构,通过宽范围连续调节推力来保障控制精度与稳定性。但调节过程中会发生模式转换导致阳极电流突变,降低控制精度和稳定性。因此,有必要对模式转换发生的规律进行研究。本文通过探针诊断等方式,研究了微波模式转换前后推力器内部等离子体参数与放电特性的变化规律。实验结果显示,模式转换前,等离子体亮区主要集中于阳极前端约1–3 mm处的电子回旋共振区域;转换后,亮区向上游移动,近阳极区等离子体密度超过截止密度,沿轴向急剧下降。等离子体密度变化改变基本波的传输特性是电子加热方式发生改变的根本原因。等离子体密度上升至截止密度时,驱动电离的R波与O波迅速衰减或被反射。此时R波无法到达共振面,主导的ECR电离失效。R波-O波主导电离变为O波主导电离,电子加热机制从体加热向表面波加热过渡。本文的研究将为后续优化推力器微波传输,降低模式转换发生的阈值提供依据。
    The micro-newton cusped field Hall thruster is an electric propulsion device that employs microwave-assisted ionization control. It serves as an actuator in drag-free control systems, ensuring control accuracy and stability by providing continuously adjustable thrust over a wide range. However, a mode transition occurring during the regulation process can lead to a sudden change in anode current, degrading control precision and stability. Therefore, it is necessary to investigate the underlying patterns of mode transition. This study examines the variations in internal plasma parameters and discharge characteristics of the thruster before and after microwave mode transition, primarily through probe diagnostics.Experimental results indicate that before the mode transition, the plasma luminous region is primarily concentrated within the electron cyclotron resonance (ECR) area, approximately 1-3 mm upstream of the anode. After the transition, the luminous region moves further upstream, and the plasma density near the anode exceeds the cutoff density, dropping sharply along the axial direction. The fundamental cause of the change in electron heating mechanism is the alteration in the propagation characteristics of fundamental waves due to this plasma density variation.When the plasma density rises to the cutoff density, the R-wave and O-wave, which drive ionization, are rapidly attenuated or reflected. At this point, the R-wave cannot reach the resonance layer, causing the dominant ECR ionization to become ineffective. The ionization mechanism shifts from being dominated by the R-wave and O-wave to being dominated primarily by the O-wave. Consequently, the electron heating mechanism transitions from volume heating to surface wave heating. This research will provide a basis for subsequent optimization of microwave transmission in the thruster and for reducing the threshold at which mode transition occurs.
  • [1]

    Kawamura S, Nakamura T, Ando M, Seto N, Tsubono K, Numata K, Takahashi R, Nagano S, Ishikawa T, Musha M, Ueda K-i, Sato T, Hosokawa M, Agatsuma K, Akutsu T, Aoyanagi K-s, Arai K, Araya A, Asada H, Aso Y, Chiba T, Ebisuzaki T, Eriguchi Y, Fujimoto M-K, Fukushima M, Futamase T, Ganzu K, Harada T, Hashimoto T, Hayama K, Hikida W, Himemoto Y, Hirabayashi H, Hiramatsu T, Ichiki K, Ikegami T, Inoue K T, Ioka K, Ishidoshiro K, Itoh Y, Kamagasako S, Kanda N, Kawashima N, Kirihara H, Kiuchi K, Kobayashi S, Kohri K, Kojima Y, Kokeyama K, Kozai Y, Kudoh H, Kunimori H, Kuroda K, Maeda K-i, Matsuhara H, Mino Y, Miyakawa O, Miyoki S, Mizusawa H, Morisawa T, Mukohyama S, Naito I, Nakagawa N, Nakamura K, Nakano H, Nakao K, Nishizawa A, Niwa Y, Nozawa C, Ohashi M, Ohishi N, Ohkawa M, Okutomi A, Oohara K, Sago N, Saijo M, Sakagami M, Sakata S, Sasaki M, Sato S, Shibata M, Shinkai H, Somiya K, Sotani H, Sugiyama N, Tagoshi H, Takahashi T, Takahashi H, Takahashi R, Takano T, Tanaka T, Taniguchi K, Taruya A, Tashiro H, Tokunari M, Tsujikawa S, Tsunesada Y, Yamamoto K, Yamazaki T, Yokoyama J i, Yoo C-M, Yoshida S, Yoshino T 2006 Class. Quantum Grav. 23 S125

    [2]

    Cornelisse J W 1996 Class. Quantum Grav. 13 A251

    [3]

    Vetrugno D 2017 International Journal of Modern Physics D 26 1741023

    [4]

    Mueller G 2024 Optics and Photonics for Advanced Dimensional Metrology III Strasbourg, FRANCE, 2024 p27

    [5]

    Sala L 2025 Il Nuovo Cimento C 48 1

    [6]

    Cui K, Liu H, Jiang W, Yu D 2020 Microgravity Sci. Technol. 32 189

    [7]

    Liu H, Zeng M, Niu X, Huang H Y, Yu D R 2021 Appl. Sci.-Basel 11 6549 20

    [8]

    Liu H, Niu X, Zeng M, Wang S S, Cui K, Yu D R 2022 Acta Astronautica 193 496

    [9]

    Chen Y, Wu J, Shen Y, Cao S 2024 Aerospace 11 329

    [10]

    Liu H, Zeng M, Chen Z, Qiao L, Huang H, Yu D 2021 Plasma Sources Sci. Technol. 30 09LT01

    [11]

    Zeng M, Liu H, Chen Z, Huang H, Yu D 2021 Vacuum 192 110486

    [12]

    Zeng M, Liu H, Chen Y, Wu J, Wang S, Huang H, Yu D 2022 Vacuum 205 111486

    [13]

    Zeng M, Liu H, Huang H, Yu D 2023 J. Phys. D: Appl. Phys. 56 215203

    [14]

    Fukuda T, Ueda S, Ohnishi Y, Inomoto M, Abe T 2008 RARIFIED GAS DYNAMICS: Proceedings of the 26th International Symposium on Rarified Gas Dynamics Kyoto (Japan), 2008 p923-928

    [15]

    Tsukizaki R, Ise T, Koizumi H, Togo H, Nishiyama K, Kuninaka H 2014 Journal of Propulsion and Power 30 1383

    [16]

    Tani Y, Tsukizaki R, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronautica 157 425

    [17]

    Tani Y, Yamashita Y, Tsukizaki R, Nishiyama K, Kuninaka H 2020 Acta Astronautica 176 77

    [18]

    Yamashita Y, Tsukizaki R, Daiki K, Tani Y, Shirakawa R, Hattori K, Nishiyama K 2021 Acta Astronautica 185 179

    [19]

    Yamashita Y, Tsukizaki R, Nishiyama K 2021 Plasma Sources Sci. Technol. 30 095023

    [20]

    Gao Y, Fan W, Hu P, Liu H, Yu D 2020 Plasma Sources Sci. Technol. 29 095021

    [21]

    Yang Y R, Fu S H, Ding Z F 2022 AIP Advances 12 055325

    [22]

    Li J, Fu S, Yang Y, Ding Z 2021 Plasma Sci. Technol. 23 085506

    [23]

    Fu S H, Ding Z F 2021 Physics of Plasmas 28 033510

    [24]

    Fu S H, Ding Z F 2021 Plasma Sources Sci. Technol. 30 125004

    [25]

    Ding Z F, Yang Y R, Fu S H 2023 AIP Advances 13 095007

    [26]

    Fu S H, Tian L C, Ding Z F 2022 Plasma Sources Sci. Technol. 31 025004

    [27]

    Zeng M, Liu H, Huang H, Yu D 2023 Plasma Sources Sci. Technol. 32 095014

    [28]

    Chen F F, Arnush D 2001 Physics of Plasmas 8 5051

    [29]

    Sugai H, Ghanashev I, Mizuno K 2000 Applied Physics Letters 77 3523

    [30]

    Bittencourt J A 2004 Fundamentals of Plasma Physics (New York: Springer New York) pp400-452

    [31]

    Li X, Zeng M, Liu H, Ning Z X, Yu D R 2023 Acta Phys. Sin. 72 225202 11(in Chinese)[李鑫, 曾明, 刘辉, 宁中喜, 于达仁 2023 物理学报 72 199]

  • [1] 梁远毅, 方振松, 贺亚峰, 李庆, 何寿杰. 微空心阴极自脉冲放电微观动力学过程. 物理学报, doi: 10.7498/aps.74.20241586
    [2] 吕宇曦, 王晨, 段添期, 赵彤, 常朋发, 王安帮. 级联声光器件与回音壁模式微腔实现非对称传输. 物理学报, doi: 10.7498/aps.73.20230653
    [3] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输. 物理学报, doi: 10.7498/aps.71.20211299
    [4] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究. 物理学报, doi: 10.7498/aps.70.20212194
    [5] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输研究. 物理学报, doi: 10.7498/aps.70.20211299
    [6] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, doi: 10.7498/aps.69.20191864
    [7] 刘辉, 蒋文嘉, 宁中喜, 崔凯, 曾明, 曹希峰, 于达仁. 使用不同工质的会切磁场等离子体推力器. 物理学报, doi: 10.7498/aps.67.20180366
    [8] 王琛, 安红海, 贾果, 方智恒, 王伟, 孟祥富, 谢志勇, 王世绩. 软X射线激光探针诊断高Z材料等离子体. 物理学报, doi: 10.7498/aps.63.215203
    [9] 杜寅昌, 曹金祥, 汪建, 郑哲, 刘宇, 孟刚, 任爱民, 张生俊. 射频电感耦合夹层等离子体中的模式转换. 物理学报, doi: 10.7498/aps.61.195206
    [10] 卿绍伟, 鄂鹏, 段萍. 电子温度各向异性对霍尔推力器中等离子体与壁面相互作用的影响. 物理学报, doi: 10.7498/aps.61.205202
    [11] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究. 物理学报, doi: 10.7498/aps.59.6532
    [12] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术. 物理学报, doi: 10.7498/aps.56.2330
    [13] 徐妙华, 梁天骄, 张 杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子. 物理学报, doi: 10.7498/aps.55.2357
    [14] 池凌飞, 林揆训, 姚若河, 林璇英, 余楚迎, 余云鹏. Langmuir单探针诊断射频辉光放电等离子体及其数据处理. 物理学报, doi: 10.7498/aps.50.1313
    [15] 姚若河, 池凌飞, 林璇英, 石旺舟, 林揆训. 射频辉光放电等离子体的电探针诊断及数据处理. 物理学报, doi: 10.7498/aps.49.922
    [16] 余玮, 徐至展, 马锦秀, 陈荣清. 等离子体拍频波加速器中三波相互作用的时间发展. 物理学报, doi: 10.7498/aps.42.431
    [17] 朱文浩, 朱南强, 陈跃山. 射频低压等离子体电子能量分布函数的探针诊断. 物理学报, doi: 10.7498/aps.38.236
    [18] 江志明, 徐至展, 陈时胜, 林礼煌, 张伟清, 钱爱娣. 利用多分幅光学探针诊断系统研究激光等离子体. 物理学报, doi: 10.7498/aps.37.1658
    [19] 余玮, 徐至展, 陈泽尊. 磁化不均匀等离子体中的两种模式转换. 物理学报, doi: 10.7498/aps.36.382
    [20] 朱文浩, 吴毅锋, 陈跃山. 高频电场对双探针法诊断低压等离子体的影响. 物理学报, doi: 10.7498/aps.35.1426
计量
  • 文章访问数:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-12

/

返回文章
返回