搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深度学习与密度泛函协同优化无铅双钙钛矿太阳能电池性能

王正君 陈长城 云雄飞 韩昭 拓娅莉 杜钰玺 张欣会 张春玲 关晓宁 谢江舟 刘刚 芦鹏飞

引用本文:
Citation:

深度学习与密度泛函协同优化无铅双钙钛矿太阳能电池性能

王正君, 陈长城, 云雄飞, 韩昭, 拓娅莉, 杜钰玺, 张欣会, 张春玲, 关晓宁, 谢江舟, 刘刚, 芦鹏飞

Synergistic Optimization of Lead-Free Double Perovskite Solar Cell Performance through Deep Learning and Density Functional Theory

WANG Zhengjun, CHEN Changcheng, YUN Xiongfei, HAN Zhao, TUO Yali, DU Yuxi, ZHANG Xinhui, ZHANG Chunling, GUAN Xiaoning, XIE Jiangzhou, LIU Gang, LU Pengfei
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 为了摆脱对化石燃料的过度依赖和发展绿色低碳的新能源。加速无铅无机卤化物钙钛矿在太阳能电池中的应用,开发具合适带隙的新材料至关重要。然而,传统实验与密度泛函理论(DFT)计算都需要考虑耗时、成本和准确率等问题。本研究利用了深度学习与DFT计算的协同策略,通过深度神经网络(DNN)模型精准预测55种无机卤化物双钙钛矿材料的带隙宽度。基于1181种双钙钛矿材料构建的数据库,本研究系统对比了五种机器学习模型:随机森林回归(RFR)、梯度提升回归(GBR)、支持向量回归(SVR)、极限梯度提升回归(XGBR)及深度神经网络(DNN)模型。结果表明,DNN凭借其强大的非线性映射与高维特征自动提取能力,在带隙预测中展现出卓越准确性(测试集MAE降至0.264 eV,R2提升至0.925)与泛化性能。利用这种策略,成功筛选出四种有前景的无机双钙钛矿候选材料: Cs2GaAgCl6、Cs2AgIrF6、Cs2InAgCl6、Cs2AlAgBr6。其中,Cs2AgIrF6和Cs2AlAgBr6的性能尤为突出,他们的带隙分1.36eV和1.20eV。其模拟效率分别达到23.71%(VOC=0.94 V,JSC=31.19 mA/cm2,FF=80.81%)和22.37%(VOC=0.78 V,JSC=36.73 mA/cm2,FF=77.66%),较高的开路电压和填充因子表明其具有优异的载流子分离效率与较低的器件内部非辐射复合损失。在本次研究中利用的深度学习与DFT计算的协同策略,加速了DFT数据的解析与规律挖掘,为高性能、高稳定性的环保无铅钙钛矿太阳能电池的理性设计提供了新思路。
    Accelerating the application of lead-free inorganic halide perovskites in solar cells necessitates the development of novel perovskite materials with suitable bandgap widths, high stability, and environmental friendliness. This represents a crucial pathway for driving photovoltaic technology innovation and reducing reliance on conventional fossil fuels. However, traditional material development paradigms heavily depend on trial-and error experimental screening or pure density functional theory (DFT) calculations, which incur significant time and material costs.
    To address these challenges, this study innovatively proposes and implements an efficient screening strategy based on the synergy between deep learning and DFT calculations. By constructing a database containing 1181 inorganic halide double perovskite materials, we systematically trained and compared the performance of five mainstream machine learning models for the bandgap prediction task: Random Forest Regression (RFR), Gradient Boosting Regression (GBR), Support Vector Regression (SVR), eXtreme Gradient Boosting Regression (XGBR), and a Deep Neural Network (DNN) model. Results demonstrate that the DNN model, leveraging its powerful nonlinear mapping capability and advantage in automatic high-dimensional feature extraction, achieved exceptional prediction accuracy on the test set, with the Mean Absolute Error (MAE) significantly reduced to 0.264 eV and the coefficient of determination (R2) reaching 0.925. Its performance was markedly superior to other compared models, highlighting the immense potential of deep learning in predicting complex material properties.
    Using this optimized DNN model, this study successfully screened four promising inorganic double perovskite candidates from 55 potential materials: Cs2GaAgCl6, Cs2AgIrF6, Cs2InAgCl6, and Cs2AlAgBr6. Among them, Cs2AgIrF6 and Cs2AlAgBr6 performed particularly well, with predicted bandgaps of 1.36 eV and 1.20 eV, respectively. This range ideally matches the requirement for efficient light absorption in solar cells. Further device performance simulations revealed that the solar cell based on Cs2AgIrF6 achieved a simulated power conversion efficiency (PCE) of 23.71%, with an open-circuit voltage (VOC) of 0.94 V, a short-circuit current density (JSC) of 31.19 mA/cm2, and a fill factor (FF) of 80.81%. Cs2AlAgBr6 also exhibited a simulated efficiency of 22.37%, corresponding to VOC=0.78 V, JSC=36.73 mA/cm2, and FF=77.66%. Notably, both materials demonstrated high open-circuit voltages and fill factors, clearly indicating excellent carrier separation efficiency and significantly reduced nonradiative recombination losses within these materials.
    In summary, this study successfully validates the significant efficacy of the deep learning-DFT synergistic strategy in accelerating the discovery of novel lead-free perovskite materials. This method not only substantially enhances the efficiency of DFT data analysis and the depth of pattern mining, overcoming some bottlenecks associated with traditional highthroughput calculations, but more importantly, it provides a practical and highly innovative approach for the rational design of high-performance, stable, and environmentally friendly lead-free perovskite solar cells, holding positive implications for advancing green, low-carbon energy technologies.
  • [1]

    Smal T, Wieprow J 2023 ENERGIES 16 1605

    [2]

    Ingram T, Wieczorek-Kosmala M, Hlavácek K 2023 Energies 16 702

    [3]

    Kannan N, Vakeesan D 2016 Renew. Sust. Energy Rev 62 1092

    [4]

    Liang Z, Zhang Y, Xu H, Chen W, Liu B, Zhang J, Zhang H, Wang Z, Kang D-H, Zeng J, Gao X, Wang Q, Hu H, Zhou H, Cai X, Tian X, Reiss P, Xu B, Kirchartz T, Xiao Z, Dai S, Park N-G, Ye J, Pan X 2023 Nature 624 557

    [5]

    Li Y, Ru X, Yang M, Zheng Y, Yin S, Hong C, Peng F, Qu M, Xue C, Lu J, Fang L, Su C, Chen D, Xu J, Yan C, Li Z, Xu X, Shao Z 2024 Nature 626 105

    [6]

    Razzaq A, Allen T G, Liu W Z, Liu Z X, De Wolf S 2022 JOULE 6 514

    [7]

    Urbaniak A, Czudek A, Dagar J, Unger E L 2022 Sol. Energy Mater. Sol. Cells 238 111618

    [8]

    Xie G S, Li H, Fang J, Wang X, Peng H C, Lin D X, Huang N S, Gan L, Li W J, Jiang R X, Bu T L, Huang F Z, He S S, Qiu L B 2025 Angew. Chem. Int. Ed 64 e202501764

    [9]

    Chen Y H, Feng Z J, Pal A, Zhang J C 2022 Phys. Status Solidi A 219 2200018

    [10]

    Kwon N, Lee J, Ko M J, Kim Y Y, Seo J 2023 Nano Convergence 10 28

    [11]

    Ge Y S, Zheng L K, Wang H B, Gao J, Yao F, Wang C, Li G, Guan H L, Wang S X, Cui H S, Ye F H, Shao W L, Zheng Z M, Yu Z X, Wang J H, Xu Z X, Dai C J, Ma Y H, Yang Y, Guan Z Q, Liu Y, Wang J B, Lin Q Q, Li Z Y, Li X, Ke W J, Grätzel M, Fang G J 2025 Nat. Photonics 19 170

    [12]

    Ahn N, Choi M 2024 Adv. Sci 11 2306110

    [13]

    Sun Y Q, Li F M, Zhang H, Liu W Z, Wang Z H, Mao L, Li Q, He Y L, Yang T, Sun X G, Qian Y C, Ma Y Y, Zhang L P, Du J L, Shi J H, Wang G Y, Han A J, Wang N, Meng F Y, Liu Z X, Liu M Z 2025 Nat. Commun 16 5733

    [14]

    Geng L, Ma Y Y, Sun Y Q, Cai Z L, Lan L, Ma H C, Zhang H, Mao L, Li F M, Liu M Z 2025 Adv. Mater 37 2419018

    [15]

    Zhang T, Cai Z H, Chen S Y 2020 ACS Appl. Mater. Interfaces 12 20680

    [16]

    Murugan S, Lee E C 2023 Materials 16 5275

    [17]

    Cao Y, Zhang Y Q, Bao Y N, Shi L L, Cao G Y, Qin L L, Wang C L, Li X F, Yang Z H 2025 Nano Energy 142 111228

    [18]

    Zhou P P, Xiao X Z, Zhu X Y, Chen Y P, Lu W M, Piao M Y, Cao Z M, Lu M, Fang F, Li Z N, Jiang L J, Chen L X 2023 Energy Storage Mater 63 102964

    [19]

    Al-Sabana O, Abdellatif S O 2022 Optoelectron. Lett 18 148

    [20]

    Hariharan A, Ackermann M, Koss S, Khosravani A, Schleifenbaum J H, Köhnen P, Kalidindi S R, Haase C 2025 Adv. Sci 12 2414880

    [21]

    Wang Y X, Li Y, Tang Z C, Li H, Yuan Z L, Tao H G, Zou N L, Bao T, Liang X H, Chen Z Z, Xu S H, Bian C, Xu Z M, Wang C, Si C, Duan W H, Xu Y 2024 Sci. Bull 69 2514

    [22]

    Usoltsev A N, Korobeynikov N A, Novikov A S, Plyusnin P E, Kolesov B A, Fedin V P, Sokolov M N, Adonin S A 2020 Inorg. Chem 59 17320

    [23]

    Chen Y X, Zhang L F, Wang H, Weinan E 2021 J. Chem. Theory Comput 17 170

    [24]

    Absike H, Baaalla N, Attou L, Labrim H, Hartiti B, Ez-zahraouy H 2022 Solid State Commun 345 114684

    [25]

    Jebari H, Ouichou H, Hamideddine I, Boudad L, Tahiri N, El Mansouri A, El Bounagui O, Taibi M, Ez-Zahraouy H 2023 Comput. Theor. Chem 1220 113993

    [26]

    Wan X Y, Zhang Y H, Lu S H, Wu Y L, Zhou Q H, Wang J L 2022 Acta Phys. Sin 71 177101

    [27]

    Hu W G, Zhang L 2023 Mater. Today Commun 35 105841

    [28]

    Lu S H, Zhou Q H, Ouyang Y X, Guo Y L, Li Q, Wang J L 2018 Nat. Commun 9 3405

    [29]

    Yang C, Chong X Y, Hu M Y, Yu W, He J J, Zhang Y L, Feng J, Zhou Y Y, Wang L W 2023 ACS Appl. Mater. Interfaces 15 40419

    [30]

    Zhang R Q, Motes B, Tan S, Lu Y L, Shih M C, Hao Y L, Yang K R, Srinivasan S, Bawendi M G, Bulovic V 2025 ACS Energy Lett 10 1714

    [31]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater 1 011002

    [32]

    Kresse, Furthmuller 1996 Phys. Rev. B 54 11169

    [33]

    Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [34]

    Ming C, Yang K, Zeng H, Zhang S B, Sun Y Y 2020 Mater. Horiz 7 2985

    [35]

    Huck P, Gunter D, Cholia S, Winston D, N'Diaye A T, Persson K 2016 Concurr. Comput 28 1982

    [36]

    Li W B, Li Y H, Zhang Z L, Gao P 2023 J. Energy Chem 84 347

    [37]

    Al-Daraghmeh T M, Zayed O, Zelai T, Saba S, Mustafa G M, Hakami O, Albalawi H, Bouzgarrou S, Mahmoud Z, Mahmood Q 2023 J. Solid State Chem 322 124003

    [38]

    Du K-z, Meng W, Wang X, Yan Y, Mitzi D B 2017 Angew. Chem. Int. Ed 56 8158

    [39]

    White J, Power S D 2023 Sensors 23 6077

    [40]

    Chen Z M, Wang J, Li C J, Liu B Q, Luo D X, Min Y G, Fu N Q, Xue Q F 2024 J. Mater. Chem. C 12 15444

    [41]

    Nasir I M, Khan M A, Yasmin M, Shah J H, Gabryel M, Scherer R, Damasevicius R 2020 Sensors 20 6793

    [42]

    Wang Q Y, Wang Z, Mizuguchi K, Takao T 2025 Sci. Adv 11 eadt2624

    [43]

    Wenzel J, Matter H, Schmidt F 2019 J. Chem. Inf. Model 59 1253

    [44]

    Hornik K, Stinchcombe M, White H 1989 Neural Netw 2 359

    [45]

    Beniaguev D, Segev I, London M 2021 Neuron 109 2727

    [46]

    Smajic A, Grandits M, Ecker G F 2022 J. Cheminform 14 54

    [47]

    Zhu S, Yu C, Hu J 2024 Appl. Soft Comput 154 111337

    [48]

    Sun Y T, Ding S F, Zhang Z C, Jia W K 2021 Soft Comput 25 5633

    [49]

    Browne 2000 J. Math. Psychol 44 108

    [50]

    Yates L A, Aandahl Z, Richards S A, Brook B W 2023 Ecol. Monogr 93 e1557

    [51]

    Baldi P, Brunak S, Chauvin Y, Andersen C A, Nielsen H 2000 Bioinformatics 16 412

    [52]

    Guo H, Lorin E, Noxon C, Yang X 2025 J. Sci. Comput 103 76

    [53]

    Huang J, Lei T, Siron M, Zhang Y, Yu S, Seeler F, Dehestani A, Quan L N, Schierle-Arndt K, Yang P 2020 Nano Lett 20 3734

    [54]

    Deng X, Zhang Z, Zhang Z, Wu Y, Song H, Li H, Luo B 2024 Adv. Sci 11 2407751

    [55]

    Sharma S, Ward Z D, Bhimani K, Sharma M, Quinton J, Rhone T D, Shi S F, Terrones H, Koratkar N 2023 ACS Appl. Mater. Interfaces 15 18962

    [56]

    Liang Y, Li F, Cui X, Stampfl C, Ringer S P, Yang X, Huang J, Zheng R 2025 Sci. Adv 11 eads7054

    [57]

    Ashfaq A, Tahir S, Mushtaq S, Alqurashi R S, Haneef M, Almousa N, Rehman U u, Bonilla R S 2023 Mater. Today Commun 35 106016

    [58]

    Wang S, Chen C, Shi S, Zhang Z, Cai Y, Gao S, Chen W, Guo S, Abduryim E, Dong C, Guan X, Liu Y, Liu G, Lu P 2024 J. Energy Chem 95 271

    [59]

    Yuan S, Ullah M, Tighezza A M 2025 Front. Energy 19 334

    [60]

    Sharma S, Ward Z D, Bhimani K, Sharma M, Quinton J, Rhone T D, Shi S F, Terrones H, Koratkar N 2023 ACS Appl. Mater. Interfaces 15 18962

    [61]

    Adekoya A H, Snyder G J 2024 Adv. Funct. Mater 34 2403926

    [62]

    Wang R, Jia Y L, Zhang Y, Ma X J, Xu Q, Zhu Z X, Deng Y H, Xiong Z H, Gao C H 2020 Acta Phys. Sin 69 038501

    [63]

    Nyayban A, Panda S, Chowdhury A 2023 Phys. B Condens. Matter 649 414384

    [64]

    Wang T, Zhou D, Wang Y, Li W, Wang Y, Yang H, Song R, Wang E, Song R, Fang Y, Zhou S, Bai X, Song H 2025 Adv. Funct. Mater 35 2504436

    [65]

    Wei Y Q, Xu L, Peng Q M, Wang J P 2019 Acta Phys. Sin 68 158506

    [66]

    van Zeist W-J, Ren Y, Bickelhaupt F M 2010 Sci. China Chem 53 210

    [67]

    Lu X Q, Hu R J, Zhu Y B, Song K P, Qin W 2023 NPG Asia Mater 15 38

    [68]

    Jain A, Voznyy O, Sargent E H 2017 J. Phys. Chem. C 121 7183

    [69]

    Bartel C J, Trewartha A, Wang Q, Dunn A, Jain A, Ceder G 2020 npj Comput. Mater 6 97

    [70]

    Sun Q D, Yin W J 2017 J. Am. Chem. Soc 139 14905

    [71]

    Bartel C J, Sutton C, Goldsmith B R, Ouyang R H, Musgrave C B, Ghiringhelli L M, Scheffler M 2019 Sci. Adv 5 eaav0693

    [72]

    Fedorovskiy A E, Drigo N A, Nazeeruddin M K 2020 Small Methods 4 1900426

    [73]

    Wang M, Hu H, Lin S, Yang P, Yang D 2023 Chin.Sci. Bull 68 3146

    [74]

    Emery A A, Wolverton C 2017 Sci. Data 4 170153

    [75]

    Li Y W, Na G R, Luo S L, He X, Zhang L J 2021 Acta Phys.-Chim. Sin 37 2007015

    [76]

    Gwandu B U, Nawawi Y H, Faruk S, Zauro A S 2024 Equity J. Sci. Technol 10 10

    [77]

    Hao L, Zhou M, Song Y, Ma X, Wu J, Zhu Q, Fu Z, Liu Y, Hou G, Li T 2021 Solar Energy 230 345

    [78]

    Li X, Li J, Wu S, Li Y, Peng C, Wu M, Wu J, Lin J, Ma X, Huang S 2022 Solar Energy 247 315

    [79]

    Lin C X, Liu G L, Xi X, Wang L, Wang Q Q, Sun Q Y, Li M X, Zhu B J, de Lara D P, Zai H C 2022 Materials 15 8142

    [80]

    Shen H, Li X, Zhang X, Zhou H, Zhang H, Liu X, Zhang M, Wu J, Xiang Z, Fang W 2023 Solar Energy 253 240

    [81]

    Li S, Zhou B, Zhao Q, Yang X, Xie Z, Duan Z, Zhao E, Hu Y 2025 Acta Phys. Sin 74 127701

    [82]

    Hunde B R, Woldeyohannes A D 2023 Mater. Today Commun 34 105420

  • [1] 王桂强, 陈凯飞, 孟凡宁. 原位埋底界面工程增强无机CsPbI2Br钙钛矿太阳能电池光电性能. 物理学报, doi: 10.7498/aps.75.20251311
    [2] 袁翔, 张子发, 王明吉, 何丹敏, 鹿颖申, 洪峰, 蒋最敏, 徐闰, 王应民, 马忠权, 宋宏伟, 徐飞. 双吸收层钙钛矿异质结策略提升全钙钛矿叠层太阳电池的光伏性能. 物理学报, doi: 10.7498/aps.74.20250372
    [3] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统. 物理学报, doi: 10.7498/aps.73.20240171
    [4] 仲婷婷, 郝会颖. 基于大气环境下全无机钙钛矿薄膜及碳基太阳能电池的组分调控和添加剂工程. 物理学报, doi: 10.7498/aps.73.20241439
    [5] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, doi: 10.7498/aps.73.20240827
    [6] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用. 物理学报, doi: 10.7498/aps.72.20230113
    [7] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, doi: 10.7498/aps.70.20210353
    [8] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, doi: 10.7498/aps.70.20210586
    [9] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, doi: 10.7498/aps.68.20190942
    [10] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, doi: 10.7498/aps.68.20190355
    [11] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, doi: 10.7498/aps.68.20190853
    [12] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, doi: 10.7498/aps.68.20190306
    [13] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, doi: 10.7498/aps.68.20190302
    [14] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, doi: 10.7498/aps.64.038404
    [15] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, doi: 10.7498/aps.64.038803
    [16] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, doi: 10.7498/aps.64.038405
    [17] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, doi: 10.7498/aps.64.038104
    [18] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究. 物理学报, doi: 10.7498/aps.63.198502
    [19] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计. 物理学报, doi: 10.7498/aps.63.028802
    [20] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶相变域硅薄膜及其太阳能电池. 物理学报, doi: 10.7498/aps.54.3327
计量
  • 文章访问数:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-12

/

返回文章
返回