-
量子信息科学中,不确定性原理已从其基础性限制演变为一种可操纵的核心资源,为量子保密通信的安全性和量子计算的优越性提供了根本保障.本文研究量子反馈控制下两体三能级系统的量子存储支撑熵不确定关系,利用量子反馈控制调控噪声环境中的熵不确定度及其下限.分别选取激发态和最大纠缠态作为系统的初态,通过调节反馈参数发现:反馈控制可以抑制环境噪声,显著降低熵不确定度及其下限;此外,通过数值计算,我们找到了两种初态下降低熵不确定度及其下限的最优反馈参数;发现最优反馈控制下,系统初始的最大纠缠态演化为最大经典关联态,测量粒子与存储粒子间的经典关联降低了系统稳态的熵不确定度;最后分析了熵不确定性与系统纯度之间的关系,发现熵不确定度及其下限的演化与系统纯度呈现负相关,为通过量子态纯化降低不确定性指明了方向.The uncertainty principle, a cornerstone of quantum mechanics, has evolved from a fundamental limitation into a manageable resource in quantum information science. Precise control over quantum uncertainty is crucial for ensuring the security of quantum cryptography and the advantage of quantum computation. This work investigates the control of the quantum-memory-assisted entropic uncertainty relation in a noisy two-particle qutrit system, using quantum feedback control as a suppression strategy. In our model, Bob prepares a system AB composed of two V-type three-level atoms and sends atom A to Alice. Atom A interacts with a bimodal dissipative cavity. To suppress decoherence, a photodetector is used to monitor the dissipative cavity. Once a photon is detected, a local quantum feedback control is applied to atom A. Meanwhile, Bob’s atom B is assumed to be isolated from the noisy environment. To quantify the uncertainty, we select two incompatible observables, Sx and Sz, corresponding to the spin-1 components. We analyze the evolution of the entropic uncertainty and its lower bound, with the system initialized in two distinct states: an excited state and a maximally entangled state. Our findings demonstrate that applying appropriate quantum feedback control to the system can significantly suppress decoherence, leading to a marked reduction in both the entropic uncertainty and its lower bound. Through numerical simulations, we identify the optimal feedback strength for minimizing the entropic uncertainty and its lower bound to be p=2 for both initial states. Furthermore, examination of the system’s steady-state behavior after prolonged evolution reveals a key insight: under optimal feedback, the initial maximally entangled state evolves into a state with maximal classical correlation. Although no quantum correlation exists in this steady state, the strong classical correlation provides Bob with partial information about atom A, thereby enhancing his prediction accuracy for the measurement outcomes and leading to the observed reduction in the entropic uncertainty. Additionally, we explore the dynamics of the system’s purity. The results show a clear negative correlation, indicating that the reduction in entropic uncertainty is directly attributable to the purification of the system effected by the feedback control. In conclusion, this study establishes quantum feedback control as an effective theoretical protocol for suppressing the entropic uncertainty in realistic noisy environments. It provides a viable pathway for manipulating quantum uncertainty to enhance the robustness and performance of quantum information processing tasks.
-
Keywords:
- Entropic uncertainty relation /
- Feedback control /
- Noisy environment
-
[1] Heisenberg W 1927 Z. Phys. 43 172
[2] Robertson H P 1929 Phys. Rev. 34 163
[3] Deutsch D 1983 Phys. Rev. Lett. 50 631
[4] Kraus K 1987 Phys. Rev. D 35 3070
[5] Maassen H, Uffink J B M 1988 Phys. Rev. Lett. 60 1103
[6] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
[7] Coles P J, Yu L, Gheorghiu V, Griffiths R B 2011 Phys. Rev. A 83 062338
[8] Renes J M, Boileau J C 2009 Phys. Rev. Lett 103 020402
[9] Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7 757
[10] Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7 752
[11] Xie B F, Ming F, Wang D, Ye L, Chen J L 2021 Phys. Rev. A 104 062204
[12] Wu L, Ye L, Wang D 2022 Phys. Rev. A 106 062219
[13] Wang T Y, Wang D 2024 Phys. Lett. B 855 138876
[14] Tomamichel M, Lim C C W, Gisin N, Renner R 2012 Nat. Commun. 3 634
[15] Ming F, Wang D, Fan X G, Shi W N, Ye L and Chen J L 2020 Phys. Rev. A 102 012206
[16] Hu M L, Fan H 2012 Phys. Rev. A 86 032338
[17] Ren L H, Shi Y H, Chen J J, Fan H 2023 Phys. Rev. A 107 052617
[18] Coles P J, Berta M, Tomamichel M, Wehner S 2017 Rev. Mod. Phys. 89 015002
[19] Song M L, Li L J, Song X K, Ye L and Wang D 2022 Phys. Rev. E 106 054107
[20] Song M L, Song X K, Ye L, Wang D 2024 Phys. Rev. E 109 064103
[21] Xu Z Y, Yang W L, Feng M 2012 Phys. Rev. A 86 012113
[22] Yao Y B, Wang D, Ming F, Ye L 2020 J. Phys. B 53 035501
[23] Rahman A R, Abd-Rabbou M Y, Zangi S M, Javed M 2022 Phys. Scr. 97 105101
[24] Hajihoseinlou H, Ahansaz B 2024 Laser Phys 34 075202
[25] Basit A, Ali H, Gao X L, Li P B, Sadiek G and Eleuch H 2024 Phys. Rev. A 110 012429
[26] Ali H, Basit A, Li P B 2025 Phys. Rev. A 111 032418
[27] Gillett G, Dalton R B, Lanyon B P, Almeida M P 2010 Phys. Rev. Lett. 104 080503
[28] Monteiro T S 2021 Nature 595 7867
[29] Wiseman H M, Milburn G J 1991 Phys. Rev. Lett. 70 548
[30] Wiseman H M 1994 Phys. Rev. A 49 2133
[31] Chen Y, Zou J, Li J G, Liu Y, Shao B 2010 Acta Phys. Sin. 59 8365-8370 (in Chinese) [陈宇、邹健、李军刚、邵彬 2010 物理学报 59 8365-8370]
[32] Shao X Q, Zheng T Y, Zhang S 2012 Phys. Rev. A 85 042308
[33] Yu M, Fang M F, Zou H M 2018 Chinese Phys. B 27 010303
[34] Hou L, Shao B, Wang C 2023 Int. J. Theor. Phys. 62 47
[35] Hu Y H, Cao L M, Yang H F, Tan Y G, Wu Q 2020 Laser Phys. Lett. 17 035208
[36] Wang C, Fang M F 2020 Quantum Inf. Process. 19 112
[37] Hong H Y, Lu X J, Kuang S 2023 Chinese Phys. B 32 040603
[38] Zong X L, Song W, Yang M, Cao Z L 2020 Quantum Inf. Process. 19 131
[39] Modi K, Paterek T, Son W, Vedral V, Williamson M 2010 Phys. Rev. Lett. 104 080501
[40] Ollivier H, Zurek W H 2002 Phys. Rev. Lett. 88 017901
[41] Boukobza E, Tannor D J 2005 Phys. Rev. A 71 063821
计量
- 文章访问数: 6
- PDF下载量: 0
- 被引次数: 0








下载: