-
光探测器在光通信、环境监测和医学成像等领域具有重要应用,其性能与核心材料的性质密切相关,因此高性能光探测材料的研究一直是材料研究领域的热点和前沿方向。紫精有机材料因其独特的氧化还原与变色特性,在电致变色器件、生物传感器件及液流电池等方面得到广泛应用。本工作设计并合成了含过渡金属元素Co的紫精配合物{[Co (BPYBDC)(H2O)5]·(BDC)·H2O}(后简称1-Co),利用一系列原位高压下的测试技术对1-Co开展了系统研究。研究结果表明,1-Co具有Pc晶体结构,随着压强升至11.6 GPa,其晶体结构保持稳定,未发生结构相变。紫外-可见吸收光谱显示,升压过程中其吸收边红移,样品颜色发生由无色透明向黄色的转变,其高压下的输运和光电性能研究结果显示,压强提高了电荷传输能力,但显著削弱了光电流响应度。研究揭示了高压下分子轨道重叠增加,带隙降低,分子间距离缩短,使样品更容易形成电荷转移通道,促进了紫精自由基的生成,但紫精自由基的产生抑制了光电流的分离和传输过程。本研究获得了1-Co在高压下的结构-性能关系,为紫精基光电功能材料的应用提供了重要依据。Photodetectors play an essential role in optical communications, environmental monitoring, and medical imaging, and their performance strongly depends on the properties of the optoelectronic materials. Therefore, the exploration of high-performance optoelectronic materials has long been a research focus in the field of materials science. Viologen-based organic materials, owing to their unique redox and chromic characteristics, have been extensively utilized in electrochromic devices, biosensors, and flow batteries. In this work, a viologen complex containing the transition metal element Co, {[Co(BPYBDC) (H2O)5]·(BDC)·H2O} (denoted as 1-Co) was designed and successfully synthesized. A series of in-situ high-pressure characterization techniques were employed to systematically investigate its structural and optoelectronic behaviors. The results reveal that 1-Co crystallizes in the Pc space group and remains structurally stable up to 11.6 GPa without any phase transition. UV-visible absorption spectroscopy shows a red-shift of the absorption edge upon compression, accompanied by a color change from colorless and transparent to yellow, indicating a pressure-induced narrowing of the optical bandgap. Consistent with the bandgap narrowing, impedance measurements demonstrate a significant reduction in the total resistance under compression, which remains about two orders of magnitude lower than the initial value after decompression. Furthermore, the photocurrent response is markedly suppressed under compression and barely recovers upon pressure release. This behavior can be attributed to the enhanced recombination of electrons with viologen groups under compression, leading to the formation of stable viologen radical states. These localized radicals cannot effectively participate in the separation and transport of photogenerated carriers, thereby contributing little to the photocurrent. These findings suggest that high pressure effectively modulates the optical and electrical behaviors of 1-Co by tuning intermolecular interactions and the electronic band structure, providing valuable insights into the pressure-dependent behavior of viologen-based materials.
-
Keywords:
- Viologen metal-organic materials /
- high-pressure regulation /
- crystal structure /
- optoelectronic properties
-
[1] Michaelis L, Hill E S 1933 J. Gen. Physiol. 16 859
[2] Puguan J M C, Rathod P V, Kim H 2021 ACS Appl. Mater. Interfaces 13 36330
[3] Sun C, Wang M, Li P, Guo G 2017 Angew. Chem. 129 569
[4] Sun M, Lv J, Xu H, Zhang L, Zhong Y, Chen Z, Sui X, Wang B, Feng X, Mao Z 2020 Cellulose 27 2939
[5] Lin X Y, Zhao L M, Wang D H, Wang Y K, Li M, Li H H, Chen Z R 2018 Inorg. Chem. Front. 5 189
[6] Xu X, Liu T, Yang M, Tian A, Ying J 2023 Mater. Lett. 337 133974
[7] Li S L, Li M, Zhang Y, Xu H M, Zhang X M 2020 Inorg. Chem. 59 9047
[8] Tan Y, Fu Z, Zeng Y, Chen H, Liao S, Zhang J, Dai J 2012 J. Mater. Chem. 22 17452
[9] Li L, Wang J R, Hua Y, Guo Y, Fu C, Sun Y N, Zhang H 2019 J. Mater. Chem. C 7 38
[10] Sui Q, Wang H, Zhang Y, Sun R, Jin X, Wang B, Wang L, Gao S 2023 Chem. – Eur. J. 29 e202301575
[11] Li A, Xu S, Bi C, Geng Y, Cui H, Xu W 2021 Mater. Chem. Front. 5 2588
[12] Sui Q, Ren X T, Dai Y X, Wang K, Li W T, Gong T, Fang J J, Zou B, Gao E Q, Wang L 2017 Chem. Sci. 8 2758
[13] Monk P M S 1998 The viologens: Physicochemical properties, synthesis and applications of the salts of 4,4’-bipyridine (New York Weinheim: Wiley) pp311
[14] Drickamer H G, Bray K L 1990 Acc. Chem. Res. 23 55
[15] Pinkowicz D, Rams M, Mišek M, Kamenev K V, Tomkowiak H, Katrusiak A, Sieklucka B 2015 J. Am. Chem. Soc. 137 8795
[16] Song K, Miller R D, Wallraff G M, Rabolt J F 1991 Macromolecules 24 4084
[17] Chung W, Shibaguchi H, Terao K, Fujiki M, Naito M 2011 Macromolecules 44 6568
[18] Song K, Kuzmany H, Wallraff G M, Miller R D, Rabolt J F 1990 Macromolecules 23 3870
[19] Sato T, Yagi T, Tajima H, Fukuda T, Yamamoto T 2008 React. Funct. Polym. 68 369
[20] Meng X, Qi G, Zhang C, Wang K, Zou B, Ma Y 2015 Chem. Commun. 51 9320
[21] Rahman S, Samanta S, Kuzmin A, Errandonea D, Saqib H, Brewe D L, Kim J, Lu J, Wang L 2019 Adv. Sci. 6 1901132
[22] Liu K, Tang J, Dai L, Yang Y, Liang W, Luo S, Luo G, Zhang J, Li Q, Wang T, Wang R, Dong J, Meng Y, Liu G 2025 Appl. Phys. Lett. 127 022102
[23] Yamanoi Y, Terasaki N, Miyachi M, Inoue Y, Nishihara H 2012 Thin Solid Films 520 5123
[24] Shen Z W, Wu Z Y, Wang S J, Wang H C, Li H K, Song J, Gao G Y, Wang L, Tian Y J 2024 Chin. Phys. Lett. 41 117101 (in Chinese)[申志伟,邬中炎,王邵杰,王贺冲,李宏凯,宋静,高国英,王霖,田永君2024 中国物理快报 41 117101]
[25] Prescher C, Prakapenka V B 2015 High Press. Res. 35 223
[26] Toby B H, Von Dreele R B 2013 J. Appl. Crystallogr. 46 544
[27] Rietveld H M 1969 J. Appl. Crystallogr. 2 65
[28] Fang S, Li Q, Li Z, Dong Q, Jing X, Li C, Li H, Liu B, Liu R, Liu B 2023 Mater. Res. Lett. 11 134
[29] Wang N, Zhang G, Wang G, Feng Z, Li Q, Zhang H, Li Y, Liu C 2024 Small 20 2400216
[30] Konstantatos G, Sargent E H 2010 Nat. Nanotechnol. 5 391
计量
- 文章访问数: 6
- PDF下载量: 0
- 被引次数: 0








下载: