搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫精金属配合物{[Co (BPYBDC)(H2O)5]·(BDC)·H2O}的高压结构稳定性和光电性能研究

王贺冲 申志伟 王邵杰 李宏凯 李明豫 邬中炎 王玉柱 隋琪 王霖

引用本文:
Citation:

紫精金属配合物{[Co (BPYBDC)(H2O)5]·(BDC)·H2O}的高压结构稳定性和光电性能研究

王贺冲, 申志伟, 王邵杰, 李宏凯, 李明豫, 邬中炎, 王玉柱, 隋琪, 王霖

High-pressure structural stability and photoelectric properties of the viologen metal complex {[Co(BPYBDC)(H2O)5]∙(BDC)∙H2O}

WANG Hechong, SHEN Zhiwei, WANG Shaojie, LI Hongkai, LI Mingyu, WU Zhongyan, WANG Yuzhu, SUI Qi, WANG Lin
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 光探测器在光通信、环境监测和医学成像等领域具有重要应用,其性能与核心材料的性质密切相关,因此高性能光探测材料的研究一直是材料研究领域的热点和前沿方向。紫精有机材料因其独特的氧化还原与变色特性,在电致变色器件、生物传感器件及液流电池等方面得到广泛应用。本工作设计并合成了含过渡金属元素Co的紫精配合物{[Co (BPYBDC)(H2O)5]·(BDC)·H2O}(后简称1-Co),利用一系列原位高压下的测试技术对1-Co开展了系统研究。研究结果表明,1-Co具有Pc晶体结构,随着压强升至11.6 GPa,其晶体结构保持稳定,未发生结构相变。紫外-可见吸收光谱显示,升压过程中其吸收边红移,样品颜色发生由无色透明向黄色的转变,其高压下的输运和光电性能研究结果显示,压强提高了电荷传输能力,但显著削弱了光电流响应度。研究揭示了高压下分子轨道重叠增加,带隙降低,分子间距离缩短,使样品更容易形成电荷转移通道,促进了紫精自由基的生成,但紫精自由基的产生抑制了光电流的分离和传输过程。本研究获得了1-Co在高压下的结构-性能关系,为紫精基光电功能材料的应用提供了重要依据。
    Photodetectors play an essential role in optical communications, environmental monitoring, and medical imaging, and their performance strongly depends on the properties of the optoelectronic materials. Therefore, the exploration of high-performance optoelectronic materials has long been a research focus in the field of materials science. Viologen-based organic materials, owing to their unique redox and chromic characteristics, have been extensively utilized in electrochromic devices, biosensors, and flow batteries. In this work, a viologen complex containing the transition metal element Co, {[Co(BPYBDC) (H2O)5]·(BDC)·H2O} (denoted as 1-Co) was designed and successfully synthesized. A series of in-situ high-pressure characterization techniques were employed to systematically investigate its structural and optoelectronic behaviors. The results reveal that 1-Co crystallizes in the Pc space group and remains structurally stable up to 11.6 GPa without any phase transition. UV-visible absorption spectroscopy shows a red-shift of the absorption edge upon compression, accompanied by a color change from colorless and transparent to yellow, indicating a pressure-induced narrowing of the optical bandgap. Consistent with the bandgap narrowing, impedance measurements demonstrate a significant reduction in the total resistance under compression, which remains about two orders of magnitude lower than the initial value after decompression. Furthermore, the photocurrent response is markedly suppressed under compression and barely recovers upon pressure release. This behavior can be attributed to the enhanced recombination of electrons with viologen groups under compression, leading to the formation of stable viologen radical states. These localized radicals cannot effectively participate in the separation and transport of photogenerated carriers, thereby contributing little to the photocurrent. These findings suggest that high pressure effectively modulates the optical and electrical behaviors of 1-Co by tuning intermolecular interactions and the electronic band structure, providing valuable insights into the pressure-dependent behavior of viologen-based materials.
  • [1]

    Michaelis L, Hill E S 1933 J. Gen. Physiol. 16 859

    [2]

    Puguan J M C, Rathod P V, Kim H 2021 ACS Appl. Mater. Interfaces 13 36330

    [3]

    Sun C, Wang M, Li P, Guo G 2017 Angew. Chem. 129 569

    [4]

    Sun M, Lv J, Xu H, Zhang L, Zhong Y, Chen Z, Sui X, Wang B, Feng X, Mao Z 2020 Cellulose 27 2939

    [5]

    Lin X Y, Zhao L M, Wang D H, Wang Y K, Li M, Li H H, Chen Z R 2018 Inorg. Chem. Front. 5 189

    [6]

    Xu X, Liu T, Yang M, Tian A, Ying J 2023 Mater. Lett. 337 133974

    [7]

    Li S L, Li M, Zhang Y, Xu H M, Zhang X M 2020 Inorg. Chem. 59 9047

    [8]

    Tan Y, Fu Z, Zeng Y, Chen H, Liao S, Zhang J, Dai J 2012 J. Mater. Chem. 22 17452

    [9]

    Li L, Wang J R, Hua Y, Guo Y, Fu C, Sun Y N, Zhang H 2019 J. Mater. Chem. C 7 38

    [10]

    Sui Q, Wang H, Zhang Y, Sun R, Jin X, Wang B, Wang L, Gao S 2023 Chem. – Eur. J. 29 e202301575

    [11]

    Li A, Xu S, Bi C, Geng Y, Cui H, Xu W 2021 Mater. Chem. Front. 5 2588

    [12]

    Sui Q, Ren X T, Dai Y X, Wang K, Li W T, Gong T, Fang J J, Zou B, Gao E Q, Wang L 2017 Chem. Sci. 8 2758

    [13]

    Monk P M S 1998 The viologens: Physicochemical properties, synthesis and applications of the salts of 4,4’-bipyridine (New York Weinheim: Wiley) pp311

    [14]

    Drickamer H G, Bray K L 1990 Acc. Chem. Res. 23 55

    [15]

    Pinkowicz D, Rams M, Mišek M, Kamenev K V, Tomkowiak H, Katrusiak A, Sieklucka B 2015 J. Am. Chem. Soc. 137 8795

    [16]

    Song K, Miller R D, Wallraff G M, Rabolt J F 1991 Macromolecules 24 4084

    [17]

    Chung W, Shibaguchi H, Terao K, Fujiki M, Naito M 2011 Macromolecules 44 6568

    [18]

    Song K, Kuzmany H, Wallraff G M, Miller R D, Rabolt J F 1990 Macromolecules 23 3870

    [19]

    Sato T, Yagi T, Tajima H, Fukuda T, Yamamoto T 2008 React. Funct. Polym. 68 369

    [20]

    Meng X, Qi G, Zhang C, Wang K, Zou B, Ma Y 2015 Chem. Commun. 51 9320

    [21]

    Rahman S, Samanta S, Kuzmin A, Errandonea D, Saqib H, Brewe D L, Kim J, Lu J, Wang L 2019 Adv. Sci. 6 1901132

    [22]

    Liu K, Tang J, Dai L, Yang Y, Liang W, Luo S, Luo G, Zhang J, Li Q, Wang T, Wang R, Dong J, Meng Y, Liu G 2025 Appl. Phys. Lett. 127 022102

    [23]

    Yamanoi Y, Terasaki N, Miyachi M, Inoue Y, Nishihara H 2012 Thin Solid Films 520 5123

    [24]

    Shen Z W, Wu Z Y, Wang S J, Wang H C, Li H K, Song J, Gao G Y, Wang L, Tian Y J 2024 Chin. Phys. Lett. 41 117101 (in Chinese)[申志伟,邬中炎,王邵杰,王贺冲,李宏凯,宋静,高国英,王霖,田永君2024 中国物理快报 41 117101]

    [25]

    Prescher C, Prakapenka V B 2015 High Press. Res. 35 223

    [26]

    Toby B H, Von Dreele R B 2013 J. Appl. Crystallogr. 46 544

    [27]

    Rietveld H M 1969 J. Appl. Crystallogr. 2 65

    [28]

    Fang S, Li Q, Li Z, Dong Q, Jing X, Li C, Li H, Liu B, Liu R, Liu B 2023 Mater. Res. Lett. 11 134

    [29]

    Wang N, Zhang G, Wang G, Feng Z, Li Q, Zhang H, Li Y, Liu C 2024 Small 20 2400216

    [30]

    Konstantatos G, Sargent E H 2010 Nat. Nanotechnol. 5 391

  • [1] 王桂强, 陈凯飞, 孟凡宁. 原位埋底界面工程增强无机CsPbI2Br钙钛矿太阳能电池光电性能. 物理学报, doi: 10.7498/aps.75.20251311
    [2] 郭宏伟, 贺苗苗, 姜云, 李会, 张金彦, 连敏, 崔田. 高压下无铅双钙钛矿Cs2AgInCl6的结构和光电性能. 物理学报, doi: 10.7498/aps.74.20250613
    [3] 程龄莹, 张华芳, 毛艳丽. 高压下二维材料结构和光电性能研究进展. 物理学报, doi: 10.7498/aps.74.20251034
    [4] 王桂强, 王东升, 毕佳宇, 常嘉润, 孟凡宁. 苯基硫脲调控CsPbIBr2钙钛矿结晶及其光电性能. 物理学报, doi: 10.7498/aps.72.20230593
    [5] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱. 物理学报, doi: 10.7498/aps.71.20220053
    [6] 孙建平, Prashant Shahi, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光. 插层FeSe高温超导体的高压研究进展. 物理学报, doi: 10.7498/aps.67.20181319
    [7] 何金云, 彭代江, 王燕舞, 龙飞, 邹正光. 具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究. 物理学报, doi: 10.7498/aps.67.20172287
    [8] 程金光. 高压调控的磁性量子临界点和非常规超导电性. 物理学报, doi: 10.7498/aps.66.037401
    [9] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, doi: 10.7498/aps.66.036102
    [10] 程静云, 康朝阳, 宗海涛, 曹国华, 李明. Ag缓冲层对ZnO:Al薄膜结构与光电性能的改善. 物理学报, doi: 10.7498/aps.66.027702
    [11] 黄立静, 任乃飞, 李保家, 周明. 激光辐照对热退火金属/掺氟二氧化锡透明导电薄膜光电性能的影响. 物理学报, doi: 10.7498/aps.64.034211
    [12] 宁凯杰, 张庆礼, 周鹏宇, 杨华军, 许兰, 孙敦陆, 殷绍唐. Yb3+:Gd2SiO5晶体的结构和光谱性能. 物理学报, doi: 10.7498/aps.61.128102
    [13] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, doi: 10.7498/aps.61.086101
    [14] 陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生. (K0.45Na0.55)NbO3无铅压电晶体的生长形态与介电性能研究. 物理学报, doi: 10.7498/aps.60.107704
    [15] 曾乐贵, 刘发民, 钟文武, 丁芃, 蔡鲁刚, 周传仓. Nb/SnO2复合薄膜的制备、结构及光电性能. 物理学报, doi: 10.7498/aps.60.038203
    [16] 郑莹莹, 邓海涛, 万静, 李超荣. 有机-无机杂化钙钛矿自组装量子阱结构的能带调控和光电性能的研究. 物理学报, doi: 10.7498/aps.60.067306
    [17] 陈怡, 申江. 稀土金属间化合物RFe2Zn20-xInx的结构属性研究. 物理学报, doi: 10.7498/aps.58.146
    [18] 方 方, 郑时有, 周广有, 陈国荣, 孙大林. 氢致LaMg2Ni合金薄膜的光电性能变化. 物理学报, doi: 10.7498/aps.57.3813
    [19] 徐金宝, 郑毓峰, 李 锦, 孙言飞, 吴 荣. 丝网印刷FeS2(pyrite)薄膜的结构及光电性能. 物理学报, doi: 10.7498/aps.53.3229
    [20] 陈镇平, 张金仓, 程国生, 李喜贵, 章讯生. 金属氧化物超导陶瓷Y-123体系烧结过程与结构缺陷的正电子实验研究. 物理学报, doi: 10.7498/aps.50.550
计量
  • 文章访问数:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-12

/

返回文章
返回