搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽能中子与碳相互作用的高精度全截面测量与分析

肖友淳 肖敏 陈永浩 黄文鑫 薛洁明 刘静 唐诗琦 易晗 樊瑞睿 栾鹏 程品晶 郑波 冯松

引用本文:
Citation:

宽能中子与碳相互作用的高精度全截面测量与分析

肖友淳, 肖敏, 陈永浩, 黄文鑫, 薛洁明, 刘静, 唐诗琦, 易晗, 樊瑞睿, 栾鹏, 程品晶, 郑波, 冯松

High-Precision Measurement and Analysis of the Neutron-induced Total Cross Section of Carbon in a Wide Energy Range

XIAO Youchun, XIAO Min, CHEN Yonghao, HUANG Wenxin, XUE Jieming, LIU Jing, TANG Shiqi, FAN Ruirui, YI Han, LUAN Peng, CHENG Pinjing, ZHENG Bo, FENG Song
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 中子全截面是关键的核反应数据之一。基于中国散裂中子源Back-n白光中子束线,采用透射法与中子飞行时间法测量了天然碳中子全截面。实验利用基于多层裂变电离室的NTOX谱仪,通过γ-flash定时、235U共振峰刻度飞行距离、双束团解谱等技术,获得了0.3eV-50 MeV能区天然碳中子全截面。实验数据在0.3 eV-100 keV能区与ENDF/B-VIII.1评价库及已报道的测量结果高度吻合,但不确定度更小;在100 keV以上能区,经双束团解谱后的数据与主要评价数据库趋势一致,并清晰展示了2 MeV以上的中子共振结构。本研究为澄清是否存在4.93 MeV的共振峰和20 MeV以上能区的数据再评价提供了高质量实验数据参考。
    The neutron total cross section is fundamental nuclear data crucial for the design of nuclear energy systems and research in nuclear physics. For graphite, an important reactor moderator, significant discrepancies exist among the major evaluated nuclear data libraries concerning its high-energy neutron total cross section, particularly in the resonance structures and the regions above 20 MeV. These uncertainties constrain the precise design of advanced nuclear systems. To resolve these controversies and provide benchmark experimental data, this study performed a high-accuracy measurement of the neutron total cross section of natural carbon from 0.3 eV to 50 MeV using the transmission method combined with the time-of-flight (TOF) technique. The experiment was conducted at the back-streaming white neutrons (Back-n) at the China Spallation Neutron Source (CSNS), utilizing the NTOX spectrometer equipped with a multi-cell fission chamber. The neutron emission time (t0) was precisely calibrated using the prompt γ-flash from the spallation reaction. The 77-meter flight path was accurately calibrated using the known standard fission resonance peaks of 235U at 8.774 eV, 12.386 eV, and 19.288 eV. For the energy region above 100 keV, a Bayesian iterative algorithm was applied to unfold the double-bunch problem, effectively resolving the overlap of TOF spectra from neutrons produced in different beam bunches. The experimental results show excellent agreement with the ENDF/B-Ⅷ.1 evaluation and existing experimental data in the EXFOR database within the 0.3 eV-100 keV region. Owing to the high statistical accuracy, approximately 97.6% of the data points have statistical uncertainties of less than 1%, with the vast majority of total uncertainties better than 2%, significantly reducing the uncertainty level in this energy region. In the 100 keV– 50 MeV energy range, the data align with the overall trends observed in mainstream evaluation databases. No significant resonance effect was detected at 4.93 MeV, providing high-quality reference data for clarifying the resonance structure at this energy point. Systematically evaluated data above 20 MeV are currently only available in JENDL-5. The measurement results of this work provide indispensable high-quality experimental data to fill the high-energy data gap and to drive updates of the relevant evaluated libraries. This study not only provides critical benchmark data for the international nuclear data re-evaluation, especially for the CENDL-3.2 library which currently lacks complete data for natural carbon, but also systematically validates the methodological reliability of obtaining wide-energy-range, high-precision neutron total cross section data at the CSNS Back-n beamline.
  • [1]

    Katoh Y, Snead L 2019 J. Nucl. Mater 526 151849

    [2]

    Zhou X W, Yang Y, Song J, Lu Z M, Zhang J, Liu B, Tang Y P 2018 New Carbon Mater. 33 97

    [3]

    Abfalterer W P, Bateman F B, Dietrich F S, Finlay R W, Haight R C, Morgan G L 2001 Phys. Rev. C 63 044608

    [4]

    Carlson A D, Pronyaev V G, Capote R, Hale G M, Chen Z P, Duran I, Hambsch F J, Kunieda S, Mannhart W, Marcinkevicius B, Nelson R O, Neudecker D, Noguere G, Paris M, Simakov S P, Schillebeeckx P, Smith D L, Tao X, Trkov A, Wallner A, Wang W 2018 Nucl. Data Sheets 148 143

    [5]

    Ramirez A P D, Peters E E, Vanhoy J R, Hicks S F, Alasagas L A, Alcorn-Dominguez D K, Block S T, Byrd S T, Chouinard E A, Combs B M, Crider B P, Derdyn E C, Downes L, Erlanson J A, Evans S E, French A J, Garza E A, Girgis J, Harrison T D, Henderson S L, Howard T J, Jackson D T, Kersting L J, Kumar A, Liu S H, Lueck C J, Lyons E M, McDonough P J, McEllistrem M T, Morin T J, Mukhopadhyay S, Nguyen T A, Nickel M, Nigam S, Pecha R L, Potter J, Prados-Estévez F M, Rice B G, Ross T J, Santonil Z C, Schneiderjan J, Sidwell L C, Sigillito A J, Steves J L, Thompson B K, Watts D W, Xiao Y, Yates S W 2022 Nucl. Phys. A 1023 122446

    [6]

    Zhang J 2006 Bulletin of Chinese Academy of Sciences 21 415 (in Chinese)[张杰 2006 中 国科学院院刊 21 415]

    [7]

    Tang J Y, Jing H T, Xia H H, Tang H Q, Zhang C, Zhou Z Y, Ruan X C, Zhang Q W, Yang Z 2013 J. Atom. Ener. 47 1089 (in Chinese) [唐靖宇, 敬罕涛, 夏海鸿, 唐洪庆, 张闯, 周 祖英, 阮锡超, 张奇玮, 杨征 2013 原子能科学技术 47 1089]

    [8]

    Liu X Y, Yang Y W, Liu R, Wen J, Wen Z W, Han Z J, Ren Z Z, An Q, Bai H Y, Bao J, Cao P, Chen Q P, Chen Y H, Cheng P J, Cui Z Q, Fan R R, Feng C Q, Gu M H, Guo F Q, Han C C, He G Z, He Y C, He Y F, Huang H X, Huang W L, Huang X R, Ji X L, Ji X Y, Jiang H Y, Jiang W, Jing H T, Kang L, Kang M T, Li B, Li L, Li Q, Li X, Li Y, Li Y, Liu S B, Luan G Y, Ma Y L, Ning C J, Qi B B, Ren J, Ruan X C, Song Z H, Sun H, Sun X Y, Sun Z J, Tan Z X, Tang H Q, Tang J Y, Wang P C, Wang Q, Wang T F, Wang Y F, Wang Z H, Wang Z, Wu Q B, Wu X G, Wu X, Xie L K, Yi H, Yu L, Yu T, Yu Y J, Zhang G H, Zhang J, Zhang L H, Zhang L Y, Zhang Q M, Zhang Q W, Zhang X P, Zhang Y L, Zhang Z Y, Zhao Y T, Zhou L, Zhou Z Y, Zhu D Y, Zhu K J, Zhu P 2019 Nucl. Sci. Tech. 30 139

    [9]

    Finlay R W, Abfalterer W P, Fink G, Montei E, Adami T 1993 Phys. Rev. C 47 238

    [10]

    Robledo J I, Dawidowski J, Márquez Damiána J I, Škoro G, Bovo C, Romanelli G 2020 Nuclear Inst. and Methods in Physics Research, A 971 164096

    [11]

    Junghans A, Beyer R, Claußner J, Kögler T, Urlass S, Bemmerer D, Ferrari A, Schwengner R, Wagner A, Dietz M, Frotscher A, Grieger1 M, Hensel T, Koppitz M, Ludwig F, Turkat S, Nolte R, Pirovano1 E, Kopecky S, Nyman M, Plompen A, Schillebeeckx P, Borris E, Reifarth R, Veltum D, Weigand M, Glorius J, Görres J, Oberlack U, Wenz D 2020 EPJ Web Conf. 239 01006

    [12]

    NRG Petten https://tendl.web.psi.ch/tendl_2023/tendl2023.html

    [13]

    Nobre G, Brown D, Arcilla R, Coles R, Shu B EPJ Web of Conferences 294 04004

    [14]

    Iwamoto O, Iwamoto N, Kunieda S, Minato F, Nakayama S, Abe Y, Tsubakihara K, Okumura S, Ishizuka C, Yoshida T, Chiba S, Otuka N, Sublet J C, Iwamoto H, Yamamoto K, Nagaya Y, Tada K, Konno C, Matsuda N, Yokoyama K, Taninaka H, Oizumi A, Fukushima M, Okita S, Chiba G, Sato S, Ohta M, Kwon S 2023 J. Nucl. Sci. Technol. 60 1

    [15]

    OECD Nuclear Energy Agency https://data.oecd-nea.org/records/e9ajn-a3p20

    [16]

    Ge Z G, Xu R R, Wu H C, Zhang Y, Chen G C, Jin Y L, Shu N C, Chen Y J, Tao X, Tian Y, Liu P, Qian J, Wang J M, Zhang H Y, Liu L L, Huang X L 2020 EPJ Web Conf. 239 09001

    [17]

    Ge Z G, Chen Y J, 2015 Chinese Science Bulletin 60 3087 (in Chinese) [葛智刚, 陈永静 2015 科学通报 60 3087]

    [18]

    Danon Y, Block R C 2002 Nuclear Inst. and Methods in Physics Research, A 485 585

    [19]

    Li B Q, Xiao M, Chen Y H, Xue J M, Li X X, Yi H, Cheng P J, Liu R, Yang Y W, Han Z J, Zhao D J, Wang H Q, Zhao J R, Luan P, Liu J, Liu Z J, Chen C M, Luo W, Zheng B, Feng S 2024 Chin. Phys. C 48 104002

    [20]

    Bai J B, Tang J Y, Shi L Q, Chen Y H, Yi H, Zhang G H, Bai H F, Bao J, Cao P, Chen Z, Cui Z Q, Fan A C, Fan R R, Feng C Q, Feng F Z, Gao K Q, Gu M H, Han C C, He G Z, He Y C, Hong Y, Hu Y W, Huang H X, Jia W H, Jiang H Y, Jiang W, Jiang Z J, Jin Z Y, Kang L, Li B, Li C, Li G, Li J W, Li Q, Li X, Li Y, Liu J, Liu S B, Luang G Y, Ning C J, Qi B B, Reng J, Ruang X C, Song Z H, Sun K, Tan Z X, Tang S D, Wang L J, Wang P C, Wang Z H, Wu X G, Wu X, Xie L K, Yu Y J, Zhang L H, Zhang M H, Zhang Q W, Zhang X P, Zhang Y L, Zhang Y, Zhang Z Y, Zhao M Y, Zhou L P, Zhou Z H, Zhu K J 2025 Phys. Lett. B 863 139355

    [21]

    Zhang J L, Jiang B, Chen Y H, Guo Z A, Wang X H, Jiang W, Yi H, Han J L, Hu J F, Tang J Y, Chen J G, Cai X Z 2022 Acta Phys. Sin. 71 052901 (in Chinese) [张江林, 姜炳, 陈永浩, 郭子安, 王小鹤, 蒋伟, 易晗, 韩建龙, 胡继峰, 唐靖宇, 陈金根, 蔡翔舟 2022 物理学 报 71 052901]

    [22]

    Tang J Y, An Q, Bai J B, Bao J, Bao Y, Cao P, Chen H L, Chen Q P, Chen Y H, Chen Z, Cui Z Q, Fan R R, Feng C Q, Gao K Q, Gao X L, Gu M H, Han C C, Han Z J, He G Z, He Y C, Hong Y, Hu Y W, Huang H X, Huang X R, Jiang H Y, Jiang W, Jiang Z J, Jing H T, Kang L, Li B, Li C, Li J W, Li Q, Li X, Li Y, Liu J, Liu R, Liu S B, Liu X Y, Long Z, Luan G Y, Ning C J, Niu M C, Qi B B, Ren J, Ren Z Z, Ruan X C, Song Z H, Sun K, Sun Z J, Tan Z X, Tang X Y, Tian B B, Wang L J, Wang P C, Wang Z H, Wen Z W, Wu X G, Wu X, Xie L K, Yang X Y, Yang Y W, Yi H, Yu L, Yu T, Yu Y J, Zhang G H, Zhang L H, Zhang Q W, Zhang X P, Zhang Y L, Zhang Z Y, Zhou L P, Zhou Z H, Zhu K J 2021 Nucl. Sci. Tech. 32 11

    [23]

    Bao J, Chen Y H, Zhang X P, Luan G Y, Ren J, Wang Q, Ruan X C, Zhang K, An Q, Bai H Y, Cao P, Chen Q P, Cheng P J, Cui Z Q, Fan R R, Feng C Q, Gu M H, Guo F Q, Han C C, Han Z J, He G Z, He Y C, He Y F, Huang H X, Huang W L, Huang X R, Ji X L, Ji X Y, Jiang H Y, Jiang W, Jing H T, Kang L, Kang M T, Lan C L, Li B, Li L, Li Q, Li X, Li Y, Li Y, Liu R, Liu S B, Liu X Y, Ma Y L, Ning C J, Nie Y B, Qi B B, Song Z H, Sun H, Sun X Y, Sun Z J, Tan Z X, Tang H Q, Tang J Y, Wang P C, Wang T F, Wang Y F, Wang Z H, Wang Z, Wen J, Wen Z W, Wu Q B, Wu X G, Wu X, Xie L K, Yang Y W, Yang Y, Yi H, Yu L, Yu T, Yu Y J, Zhang G H, Zhang J, Zhang L H, Zhang L Y, Zhang Q M, Zhang Q W, Zhang Y L, Zhang Z Y, Zhao Y T, Zhou L, Zhou Z Y, Zhu D Y, Zhu K J, Zhu P 2019 Acta Phys. Sin. 68 080101 (in Chinese) [鲍杰, 陈永浩 张显鹏 栾广源 任杰 王琦 阮锡超 张凯 安琪 白 怀勇 曹平 陈琪萍 程品晶 崔增琪 樊瑞睿 封常青 顾旻皓 郭凤琴 韩长材 韩子杰 贺国珠 何泳成 何越峰 黄翰雄 黄蔚玲 黄锡汝 季筱路 吉旭阳 江浩雨 蒋伟 敬罕涛 康玲 康明涛 兰长林 李波 李论 李强 李晓 李阳 李样 刘荣 刘树彬 刘星言 马应林 宁常军 聂阳波 齐斌斌 宋朝晖 孙虹 孙晓阳 孙志嘉 谭志新 唐洪庆 唐靖宇 王鹏程 王涛峰 王艳凤 王朝辉 王征 文杰 温中伟 吴青彪 吴晓光 吴煊 解立坤 羊奕伟 杨 毅 易晗 于莉 余滔 于永积 张国辉 张旌 张林浩 张利英 张清民 张奇伟 张玉亮 张 志永 赵映潭 周良 周祖英 朱丹阳 朱科军 朱鹏 2019 物理学报 68 080101

    [24]

    Chen Y H, Luan G Y, Bao J, Jing H T, Zhang L Y, An Q, Bai H Y, Cao P, Chen Q P, Cheng P J, Cui Z Q, Fan R R, Feng C Q, Gu M H, Guo F Q, Han C C, Han Z J, He G Z, He Y C, He Y F, Huang H X, Huang W L, Huang X R, Ji X L, Ji X Y, Jiang H Y, Jiang W, Kang L, Kang M T, Li B, Li L, Li Q, Li X, Li Y, Li Y, Liu R, Liu S B, Liu X Y, Ma Y L, Ning C J, Qi B B, Ren J, Ruan X C, Song Z H, Sun H, Sun X Y, Sun Z Y, Tan Z X, Tang H Q, Tang J Y, Wang P C, Wang Q, Wang T F, Wang Y F, Wang Z H, Wang Z, Wen J, Wen Z W, Wu Q B, Wu X G, Wu X, Xie L K, Yang Y W, Yi H, Yu L, Yu T, Yu Y J, Zhang G H, Zhang J, Zhang L H, Zhang Q M, Zhang Q W, Zhang X P, Zhang Y L, Zhang Z Y, Zhao Y T, Zhou L, Zhou Z Y, Zhu D Y, Zhu K J, Zhu P 2019 Eur. Phys. J. A 55 115

    [25]

    An Q, Bai H Y, Bao J, Cao P, Chen Y, Chen Y L, Cheng P J, Fan R R, Feng C Q, Gu J, Gu M H, He B, He G Z, He W, He Y C, He Y F, Huang H X, Huang X R, Huang W L, Ji X L, Ji X Y, Jing H T, Li B, Li B C, Li G, Li Q, Li Y, Liu R, Liu S B, Luan G Y, Ma Y L, Peng M, Ning C J, Qi X C, Ren J, Ruan X C, Shi B, Song Z H, Su X B, Sun Z J, Tang H Q, Tang J Y, Tan Z X, Wang P C, Wang Q, Wang Q, Wang Y F, Wang Z H, Wen J, Wen Z W, Wu Q B, Wu X G, Yang Y W, Yu T, Yu Y J, Zhang D L, Zhang G H, Zhang H Y, Zhang J, Zhang L Y, Zhang Q W, Zhang X P, Zhang Y X, Zhao X T, Zheng L, Zheng Y, Zhong J, Zhong Q P, Zhou L, Zhou Z Y, Zhu K J 2017 J. Instr. 12 07022

    [26]

    Liu S K 1986 Neutron Physics (Beijing: Atomic Energy Press) p21-25 (in Chinese) [刘圣 康 1986 中子物理 (北京: 原子能出版社) 第 21-25 页]

    [27]

    Wu Z H, 1997 Nuclear physics experiment method (Beijing: Atomic Energy Press) (in Chinese) [吴治华 1997 原子核物理实验方法(北京: 原子能出版社)]

    [28]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gómez Cadenas J J, González I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones F W, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia M G, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch J P, Wenaus T, Williams D C, Wright D, Yamada T, Yoshida H, Zschiesche D 2003 Nuclear Inst. and Methods in Physics Research, A 506 250

    [29]

    Xue J M, Feng S, Chen Y H, Yi H, Li X X, Xiao M, Cheng P J, Liu R, Yang Y W, Han Z J, Zhao D J, Wang H Q, Li B Q, Zhao J R, Liu Z J, Chen C M, Luo W, Zheng B 2023 Chin. Phys. C 47 124001

    [30]

    Yang Y W, Wen Z W, Han Z J, Wang M, Liu R, Wen J, Liu X Y, Chen Y H 2019 Nuclear Inst. and Methods in Physics Research, A 940 486

    [31]

    Xue J M, Feng S, Chen Y H, Yi H, Xiao M, Cheng P J, Li X X, Liu R, Yang Y W, Han Z J, Zhao D J, Wang H Q, Li B Q, Zhao J R, Tang L X, Luo W, Zheng B 2024 Nucl. Sci. Tech. 35 18

    [32]

    Yi H, Wang T F, Li Y, Ruan X C, Ren J, Chen Y H, Li Q, Wen J, Tang J Y, An Q, Bai H Y, Bao J, Bao Y, Cao P, Chen H L, Chen Q P, Chen Y K, Chen Z, Cui Z Q, Fan R R, Feng C Q, Gao K Q, Gu M H, Han C C, Han Z J, He G Z, He Y C, Hong Y, Huang H X, Huang W L, Huang X R, Ji X L, Ji X Y, Jiang H Y, Jiang W, Jiang Z J, Jing H T, Kang L, Kang M T, Li B, Li B, Li J W, Li L, Li X, Liu R, Liu S B, Liu X Y, Luan G Y, Mu Q L, Ning C J, Qi B B, Ren Z Z, Song Y P, Song Z H, Sun H, Sun K, Sun X Y, Sun Z J, Tan Z X, Tang H Q, Tang X Y, Tian B B, Wang L J, Wang P C, Wang Q, Wang Z H, Wen Z W, Wu Q B, Wu X G, Wu X, Xie L K, Yang Y W, Yu L, Yu T, Yu Y J, Zhang G H, Zhang L H, Zhang Q W, Zhang X P, Zhang Y L, Zhang Z Y, Zhao Y B, Zhou L P, Zhou Z Y, Zhu D Y, Zhu K J, Zhu P 2020 J. Instr. 15 03026

    [33]

    Blokhin A I, Gai E V, Ignatyuk A V, Koba I I, Manokhin V N, Pronyaev V G 2016 Nuclear and Reactor Constants 2 62 (in Russian)

    [34]

    Luan P, Zhao D J, Yi H, Jiang W, Yang Y W, Cheng P J, Xue J M, Zhao J R, Li B Q, Liu Jing, Wang H Q, Zheng B, Luo W, Feng S 2025 Nucl. Sci. Tech. 36 192

    [35]

    Zhao D J, Feng S, Cheng P J, Liu R, Luo W, Wang H Q, Xue J M, Zhu K, Zheng B 2023 Nucl. Sci. Tech. 34 3

    [36]

    -8-20]

    [37]

    -6-19]

  • [1] 杨皓岚, 薛洁明, 任杰, 陈永浩, 阮锡超, 王金成, 鲍杰, 樊瑞睿, 蒋伟, 孙琪, 刘颖一, 罗忠献, 黄翰雄. 1-100 eV能区169Tm中子全截面测量与共振参数分析. 物理学报, doi: 10.7498/aps.75.20251263
    [2] 孔誉谦, 邱奕嘉, 蒋伟, 孙康, 杨高乐, 易晗, 樊瑞睿, 袁岑溪, 李强, 任杰, 罗秋月, 敬罕涛, 唐靖宇, 张广鑫, 陈永浩. 中国散裂中子源反角白光中子实验装置实验厅二中低能区中子能谱研究. 物理学报, doi: 10.7498/aps.75.20251269
    [3] 周小媛, 江历阳, 李文琳, 郭浩, 武文若, 阮锡超, 黄小龙. 14.1 MeV中子诱发92Mo(n,p)92mNb反应截面的精确测量. 物理学报, doi: 10.7498/aps.74.20250700
    [4] 赵继荣, 羊奕伟, 张毅, 王诗岚, 冯松. 高能X射线FLASH放射治疗: 基于低气压电离室的束流监视器物理及性能. 物理学报, doi: 10.7498/aps.74.20250258
    [5] 张江林, 姜炳, 陈永浩, 郭子安, 王小鹤, 蒋伟, 易晗, 韩建龙, 胡继峰, 唐靖宇, 陈金根, 蔡翔舟. 基于中国散裂中子源反角白光中子束线的天然锂中子全截面测量. 物理学报, doi: 10.7498/aps.71.20211646
    [6] 张江林, 姜炳, 陈永浩, 郭子安, 王小鹤, 蒋伟, 易晗, 韩建龙, 胡继峰, 唐靖宇, Jingen Chen, 蔡翔舟. 基于CSNS Back-n的天然锂中子全截面测量. 物理学报, doi: 10.7498/aps.70.20211646
    [7] 何铁, 肖军, 安力, 阳剑, 郑普. 基于裂变γ标识技术的瞬发裂变中子谱测量新方法. 物理学报, doi: 10.7498/aps.67.20180563
    [8] 张克声, 陈刘奎, 欧卫华, 蒋学勤, 龙飞. 基于声吸收谱峰值点的天然气燃烧特性检测理论. 物理学报, doi: 10.7498/aps.64.054302
    [9] 唐彬, 曹超, 尹伟, 孙勇, 刘斌. 样品转动方式对中子全息成像结果的影响. 物理学报, doi: 10.7498/aps.64.242801
    [10] 赵无垛, 王卫国, 李海洋. 中等光强纳秒激光电离苯团簇产生多价碳离子的数值模拟和实验研究. 物理学报, doi: 10.7498/aps.63.103602
    [11] 陈国云, 辛勇, 黄福成, 魏志勇, 雷升杰, 黄三玻, 朱立, 赵经武, 马加一. 用于反应堆中子/ 射线混合场测量的涂硼电离室性能. 物理学报, doi: 10.7498/aps.61.082901
    [12] 郭红霞, 陈雨生, 张义门, 吴国荣, 周辉, 关颖, 韩福斌, 龚建成. 多层平板电离室测量不同材料界面剂量分布及其蒙特-卡洛模拟. 物理学报, doi: 10.7498/aps.50.1545
    [13] 沈皓, 承焕生, 汤家镛, 杨福家. 碳对α的非卢瑟福背散射截面研究. 物理学报, doi: 10.7498/aps.43.1569
    [14] 姚立山, 靳玉玲, 蔡敦九. 14MeV中子(n,T)与(n,3He)反应截面的系统学研究. 物理学报, doi: 10.7498/aps.42.17
    [15] 巫英坚, 李家明. 原子双光子电离截面的理论计算. 物理学报, doi: 10.7498/aps.34.933
    [16] 阮景辉, 成之绪, 陈桂英. 金属氢化物(AlH3)n的热中子非弹性散射谱. 物理学报, doi: 10.7498/aps.30.538
    [17] 叶宣化, 王德焴. 关于裂变中子谱的进一步研究. 物理学报, doi: 10.7498/aps.21.546
    [18] 肖振喜, 叶宗垣, 张应, 黄胜年. U235及Pu239裂变中子能谱的测量. 物理学报, doi: 10.7498/aps.18.467
    [19] 胡仁宇. 用小电离室测量镭所放出的γ射线的剂量率. 物理学报, doi: 10.7498/aps.18.527
    [20] 王德焴, 叶宣化. 关于裂变中子谱结构现象的理论探讨. 物理学报, doi: 10.7498/aps.18.471
计量
  • 文章访问数:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-12

/

返回文章
返回