搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态色心高压下量子磁探测研究进展

孙程美 仲成 段有意 周昊杰 王俊峰

引用本文:
Citation:

固态色心高压下量子磁探测研究进展

孙程美, 仲成, 段有意, 周昊杰, 王俊峰

Research progress on quantum magnetic sensing of solid-state color centers under high pressure

SUN Chengmei, ZHONG Cheng, DUAN Youyi, ZHOU Haojie, WANG Junfeng
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 高压科学已成为探索物质在极端条件下新物态、新现象的核心前沿领域之一.高压环境中,磁场、压强等物理量的原位探测,对揭示物质在极端条件下的行为具有重要意义.然而,传统高压磁探测技术普遍面临空间分辨率低、灵敏度差、难以实现原位磁探测等难题.近年来,基于金刚石NV色心、碳化硅硅空位/双空位色心及六方氮化硼色心等的固态量子传感器,所构建的高压量子精密测量技术,凭借微米级空间分辨率、高灵敏度与优异的原位探测能力,为高压科学研究提供了创新性技术手段.本文系统总结了高压极端条件对上述固态色心光学、自旋性质的影响,并以磁性材料的高压磁相变探测、超导材料的迈斯纳效应测量为例,介绍了基于固态色心高压下原位磁探测研究进展.该综述旨在为未来基于固态色心高压下量子精密测量的发展提供一定的技术路线指引.
    High-pressure science has emerged as one of the core frontiers in exploring novel states of matter and phenomena under extreme conditions. In high-pressure environments, the in situ detection of physical quantities such as magnetic fields and pressure is crucial for understanding material behavior under extreme conditions. However, conventional high-pressure magnetic sensing techniques often face challenges such as low spatial resolution, poor sensitivity, and difficulties in achieving in situ magnetic detection.
    In recent years, quantum sensors based on solid-state color centers—such as nitrogen-vacancy centers in diamond, silicon-vacancy/double-vacancy centers in silicon carbide, and color centers in hexagonal boron nitride—have enabled high-pressure quantum metrology with micrometer-scale spatial resolution, high sensitivity, and superior in situ detection capabilities, offering innovative solutions for high-pressure research.
    This review systematically summarizes the effects of extreme high-pressure conditions on the optical and spin properties of these solid-state defects. Furthermore, taking high-pressure magnetic phase transition studies in magnetic materials and Meissner effect measurements in superconductors as examples, we highlight recent advances in in situ magnetic sensing using solid-state color centers under high pressure. This overview aims to provide technical guidance for the future development of high-pressure quantum precision measurement techniques based on solid-state defects.
  • [1]

    Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007

    [2]

    Dias R P, Silvera I F 2017 Science 355 715

    [3]

    Salzmann C G 2019 J. Chem. Phys. 150 060901

    [4]

    Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L, Dubrovinskaia N 2020 Phys. Rev. Lett. 124 216001

    [5]

    Bhoi D, Gouchi J, Hiraoka N, Zhang Y, Ogita N, Hasegawa T, Kitagawa K, Takagi H, Kim K H, Uwatoko Y 2021 Phys. Rev. Lett. 127 217203

    [6]

    Scharf G, Guterding D, Hen B, Sarte P M, Ortiz B R, Rozenberg G K, Holder T, Wilson S D, Jeschke H O, Ron A 2025 Phys. Rev. Res. 7 013127

    [7]

    Cai W, Sun H, Xia W, Wu C, Liu Y, Liu H, Gong Y, Yao D-X, Guo Y, Wang M 2020 Phys. Rev. B 102 144525

    [8]

    Zhang C, Gu Y, Wang L, Huang L L, Fu Y, Liu C, Wang S, Su H, Mei J W, Zou X, Dai J F 2021 Nano Lett. 21 7946

    [9]

    Han W, Feng J, Dong H, Cheng M, Yang L, Yu Y, Du G, Li J, Du Y, Zhang T, Wang Z, Chen B, Shi J, Chen Y 2024 Nano Lett. 24 966

    [10]

    Gati E, Inagaki Y, Kong T, Cava R J, Furukawa Y, Canfield P C, Bud'ko S L 2019 Phys. Rev. B 100 094408

    [11]

    Valenta J, Kratochvílová M, Míšek M, Carva K, Kaštil J, Doležal P, Opletal P, Čermák P, Proschek P, Uhlířová K, Prchal J, Coak M J, Son S, Park J G, Sechovský V 2021 Phys. Rev. B 103 054424

    [12]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73

    [13]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001

    [14]

    Jackson D D, Aracne-Ruddle C, Malba V, Weir S T, Catledge S A, Vohra Y K 2003 Rev. Sci. Instrum. 74 2467

    [15]

    Marizy A, Guigue B, Occelli F, Leridon B, Loubeyre P 2017 High Pressure Res. 37 465

    [16]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648

    [17]

    Grinolds M S, Hong S, Maletinsky P, Luan L, Lukin M D, Walsworth R L, Yacoby A 2013 Nat. Phys. 9 215

    [18]

    Tetienne J P, Hingant T, Kim J V, Diez L H, Adam J P, Garcia K, Roch J F, Rohart S, Thiaville A, Ravelosona D, Jacques V 2014 Science 344 1366

    [19]

    Thiel L, Wang Z, Tschudin M A, Rohner D, Gutierrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973

    [20]

    Sun Q C, Song T, Anderson E, Brunner A, Forster J, Shalomayeva T, Taniguchi T, Watanabe K, Grafe J, Stohr R, Xu X, Wrachtrup J 2021 Nat. Commun. 12 1989

    [21]

    Dong Y, Du B, Zhang S C, Chen X D, Sun F W 2018 Acta Phys. Sin. 67 160301 (in Chinese) [董杨, 杜博, 张少春, 陈向东, 孙方稳 2018 物理学报 67 160301]

    [22]

    Koehl W F, Buckley B B, Heremans F J, Calusine G, Awschalom D D 2011 Nature 479 84

    [23]

    Mu Z, Zargaleh S A, von Bardeleben H J, Fröch J E, Nonahal M, Cai H, Yang X, Yang J, Li X, Aharonovich I, Gao W 2020 Nano Lett. 20 6142

    [24]

    Wang J F, Yan F F, Li Q, Liu Z H, Cui J M, Liu Z D, Gali A, Xu J S, Li C F, Guo G C 2021 Nat. Commun. 12 3223

    [25]

    Chen X, Luo Q Y, Guo P J, Zhou H J, Hu Q C, Wu H P, Shen X W, Cui R Y, Dong L, Wei T X, Xiao Y H, Li D, Lei L, Zhang X, Wang J F, Xiang G 2025 Adv. Funct. Mater. 35 2413529

    [26]

    Gottscholl A, Kianinia M, Soltamov V, Orlinskii S, Mamin G, Bradac C, Kasper C, Krambrock K, Sperlich A, Toth M, Aharonovich I, Dyakonov V 2020 Nat. Mater. 19 540

    [27]

    Gottscholl A, Diez M, Soltamov V, Kasper C, Sperlich A, Kianinia M, Bradac C, Aharonovich I, Dyakonov V 2021 Sci. Adv. 7 eabf3630

    [28]

    Gottscholl A, Diez M, Soltamov V, Kasper C, Krausse D, Sperlich A, Kianinia M, Bradac C, Aharonovich I, Dyakonov V 2021 Nat. Commun. 12 4480

    [29]

    Huang M, Zhou J, Chen D, Lu H, McLaughlin N J, Li S, Alghamdi M, Djugba D, Shi J, Wang H, Du C R 2022 Nat. Commun. 13 5369

    [30]

    Healey A J, Scholten S C, Yang T, Scott J A, Abrahams G J, Robertson I O, Hou X F, Guo Y F, Rahman S, Lu Y, Kianinia M, Aharonovich I, Tetienne J P 2023 Nat. Phys. 19 87

    [31]

    Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart T J, Machado F, Kobrin B, Hohn T O, Rui N Z, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin V V, Moore J E, Levitas V I, Jeanloz R, Yao N Y 2019 Science 366 1349

    [32]

    Lesik M, Plisson T, Toraille L, Renaud J, Occelli F, Schmidt M, Salord O, Delobbe A, Debuisschert T, Rondin L, Loubeyre P, Roch J F 2019 Science 366 1359

    [33]

    Yip K Y, Ho K O, Yu K Y, Chen Y, Zhang W, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Goh S K, Yang S 2019 Science 366 1355

    [34]

    Bhattacharyya P, Chen W, Huang X, Chatterjee S, Huang B, Kobrin B, Lyu Y, Smart T J, Block M, Wang E, Wang Z, Wu W, Hsieh S, Ma H, Mandyam S, Chen B, Davis E, Geballe Z M, Zu C, Struzhkin V, Jeanloz R, Moore J E, Cui T, Galli G, Halperin B I, Laumann C R, Yao N Y 2024 Nature 627 73

    [35]

    Wang M Q, Wang Y, Liu Z X, Xu G Y, Yang B, Yu P, Sun H Y, Ye X Y, Zhou J W, Goncharov A F, Wang Y, Du J F 2024 Nat. Commun. 15 8843

    [36]

    Liu L, Guo J N, Hu D Y, Yan G Z, Chen Y Z, Yu L X, Wang M, Liu X D, Huang X L 2025 Phys. Rev. Lett. 135 096001

    [37]

    Liu L, Wang J F, Liu X D, Xu H A, Cui J M, Li Q, Zhou J Y, Lin W X, He Z X, Xu W, Wei Y, Liu Z H, Wang P, Hao Z H, Ding J F, Li H O, Liu W, Li H, You L, Xu J S, Gregoryanz E, Li C F, Guo G C 2022 Nano Lett. 22 9943

    [38]

    Wang J F, Liu L, Liu X D, Li Q, Cui J M, Zhou D F, Zhou J Y, Wei Y, Xu H A, Xu W, Lin W X, Yan J W, He Z X, Liu Z H, Hao Z H, Li H O, Liu W, Xu J S, Gregoryanz E, Li C F, Guo G C 2023 Nat. Mater. 22 489

    [39]

    Du J F, Shi F Z, Kong X, Jelezko F, Wrachtrup J 2024 Rev. Mod. Phys. 96 025001

    [40]

    Hamlin J J, Zhou B B 2019 Science 366 1312

    [41]

    Dai J H, Shang Y X, Yu Y H, Xu Y, Yu H, Hong F, Yu X H, Pan X Y, Liu G Q 2022 Chin. Phys. Lett. 39 117601

    [42]

    Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C, Prawer S 2014 Phys. Rev. Lett. 112 047601

    [43]

    Christle D J, Falk A L, Andrich P, Klimov P V, Hassan J U, Son Nguyen T, Janzén E, Ohshima T, Awschalom D D 2014 Nat. Mater. 14 160

    [44]

    Yu L X, Guo N J, Liu L, Liu W, Yan G Z, Cui J M, Tang J S, Li C F, Liu X D 2025 arXiv:2501.13757Mesoscale and Nanoscale Physics

    [45]

    Zhong C, Mai D, Wang Y P, Wang H, Dai R C, Wang Z P, Sun X Y, Zhang Z M 2025 ACS Photonics 12 3717

    [46]

    Mu Z, Fraunié J, Durand A, Clément S, Finco A, Rouquette J, Hadj-Azzem A, Rougemaille N, Coraux J, Li J, Poirier T, Edgar J H, Gerber I C, Marie X, Gil B, Cassabois G, Robert C, Jacques V 2025 Nat. Commun. 16 8574

    [47]

    He G H, Gong R T, Wang Z P, Liu Z Y, Hong J H, Zhang T X, Riofrio A L, Rehfuss Z, Chen M F, Yao C Y, Poirier T, Ye B T, Wang X, Ran S, Edgar J H, Zhang S X, Yao N Y, Zu C 2025 Nat. Commun. 16 8162

    [48]

    Wen J, Xu Y, Wang G, He Z X, Chen Y, Wang N, Lu T, Ma X, Jin F, Chen L, Liu M, Fan J W, Liu X, Yu Pan X, Liu G Q, Cheng J, Yu X 2025 Nati. Sci. Rev. nwaf268

    [49]

    Liu G Q 2025 Acta Phys. Sin. 74 117601 (in Chinese) [刘刚钦 2025 物理学报 74 117601]

    [50]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624

    [51]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493

    [52]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579

  • [1] 殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰. 高压下GaAsSb纳米线室温光致发光特性研究. 物理学报, doi: 10.7498/aps.74.20250042
    [2] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究. 物理学报, doi: 10.7498/aps.72.20221656
    [3] 李恬静, 操秀霞, 唐士惠, 何林, 孟川民. 蓝宝石冲击消光晶向效应的第一性原理. 物理学报, doi: 10.7498/aps.69.20190955
    [4] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, doi: 10.7498/aps.67.20181651
    [5] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, doi: 10.7498/aps.66.039101
    [6] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术. 物理学报, doi: 10.7498/aps.66.036203
    [7] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, doi: 10.7498/aps.62.049101
    [8] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究. 物理学报, doi: 10.7498/aps.62.140702
    [9] 李楠, 黄凯凯, 陆璇辉. 提高激光抽运铯原子磁力仪灵敏度的研究. 物理学报, doi: 10.7498/aps.62.133201
    [10] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析. 物理学报, doi: 10.7498/aps.61.234205
    [11] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.177104
    [12] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.097102
    [13] 秦杰明, 张莹, 曹建明, 田立飞, 董中伟, 李岳. 高压下制备的透明低阻n-ZnO陶瓷的表征. 物理学报, doi: 10.7498/aps.60.036105
    [14] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, doi: 10.7498/aps.60.050702
    [15] 周密, 张鹏, 刘铁成, 许大鹏, 姜永恒, 高淑琴, 里佐威. 压强对苯分子费米共振的影响. 物理学报, doi: 10.7498/aps.59.210
    [16] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究. 物理学报, doi: 10.7498/aps.59.4235
    [17] 马丽, 高勇. 半超结SiGe高压快速软恢复开关二极管. 物理学报, doi: 10.7498/aps.58.529
    [18] 马丽, 朱志永, 李敏, 于世丹, 崔启良, 周强, 陈京兰, 吴光恒. 铁磁形状记忆合金Mn2NiGa中应力诱发马氏体相的结构和磁性. 物理学报, doi: 10.7498/aps.58.3479
    [19] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, doi: 10.7498/aps.56.117
    [20] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能. 物理学报, doi: 10.7498/aps.55.472
计量
  • 文章访问数:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-12

/

返回文章
返回