-
高压科学已成为探索物质在极端条件下新物态、新现象的核心前沿领域之一.高压环境中,磁场、压强等物理量的原位探测,对揭示物质在极端条件下的行为具有重要意义.然而,传统高压磁探测技术普遍面临空间分辨率低、灵敏度差、难以实现原位磁探测等难题.近年来,基于金刚石NV色心、碳化硅硅空位/双空位色心及六方氮化硼色心等的固态量子传感器,所构建的高压量子精密测量技术,凭借微米级空间分辨率、高灵敏度与优异的原位探测能力,为高压科学研究提供了创新性技术手段.本文系统总结了高压极端条件对上述固态色心光学、自旋性质的影响,并以磁性材料的高压磁相变探测、超导材料的迈斯纳效应测量为例,介绍了基于固态色心高压下原位磁探测研究进展.该综述旨在为未来基于固态色心高压下量子精密测量的发展提供一定的技术路线指引.High-pressure science has emerged as one of the core frontiers in exploring novel states of matter and phenomena under extreme conditions. In high-pressure environments, the in situ detection of physical quantities such as magnetic fields and pressure is crucial for understanding material behavior under extreme conditions. However, conventional high-pressure magnetic sensing techniques often face challenges such as low spatial resolution, poor sensitivity, and difficulties in achieving in situ magnetic detection.
In recent years, quantum sensors based on solid-state color centers—such as nitrogen-vacancy centers in diamond, silicon-vacancy/double-vacancy centers in silicon carbide, and color centers in hexagonal boron nitride—have enabled high-pressure quantum metrology with micrometer-scale spatial resolution, high sensitivity, and superior in situ detection capabilities, offering innovative solutions for high-pressure research.
This review systematically summarizes the effects of extreme high-pressure conditions on the optical and spin properties of these solid-state defects. Furthermore, taking high-pressure magnetic phase transition studies in magnetic materials and Meissner effect measurements in superconductors as examples, we highlight recent advances in in situ magnetic sensing using solid-state color centers under high pressure. This overview aims to provide technical guidance for the future development of high-pressure quantum precision measurement techniques based on solid-state defects.-
Keywords:
- high pressure /
- Solid-state color centers /
- optically detected magnetic resonance /
- in situ magnetic detection
-
[1] Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007
[2] Dias R P, Silvera I F 2017 Science 355 715
[3] Salzmann C G 2019 J. Chem. Phys. 150 060901
[4] Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L, Dubrovinskaia N 2020 Phys. Rev. Lett. 124 216001
[5] Bhoi D, Gouchi J, Hiraoka N, Zhang Y, Ogita N, Hasegawa T, Kitagawa K, Takagi H, Kim K H, Uwatoko Y 2021 Phys. Rev. Lett. 127 217203
[6] Scharf G, Guterding D, Hen B, Sarte P M, Ortiz B R, Rozenberg G K, Holder T, Wilson S D, Jeschke H O, Ron A 2025 Phys. Rev. Res. 7 013127
[7] Cai W, Sun H, Xia W, Wu C, Liu Y, Liu H, Gong Y, Yao D-X, Guo Y, Wang M 2020 Phys. Rev. B 102 144525
[8] Zhang C, Gu Y, Wang L, Huang L L, Fu Y, Liu C, Wang S, Su H, Mei J W, Zou X, Dai J F 2021 Nano Lett. 21 7946
[9] Han W, Feng J, Dong H, Cheng M, Yang L, Yu Y, Du G, Li J, Du Y, Zhang T, Wang Z, Chen B, Shi J, Chen Y 2024 Nano Lett. 24 966
[10] Gati E, Inagaki Y, Kong T, Cava R J, Furukawa Y, Canfield P C, Bud'ko S L 2019 Phys. Rev. B 100 094408
[11] Valenta J, Kratochvílová M, Míšek M, Carva K, Kaštil J, Doležal P, Opletal P, Čermák P, Proschek P, Uhlířová K, Prchal J, Coak M J, Son S, Park J G, Sechovský V 2021 Phys. Rev. B 103 054424
[12] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73
[13] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001
[14] Jackson D D, Aracne-Ruddle C, Malba V, Weir S T, Catledge S A, Vohra Y K 2003 Rev. Sci. Instrum. 74 2467
[15] Marizy A, Guigue B, Occelli F, Leridon B, Loubeyre P 2017 High Pressure Res. 37 465
[16] Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648
[17] Grinolds M S, Hong S, Maletinsky P, Luan L, Lukin M D, Walsworth R L, Yacoby A 2013 Nat. Phys. 9 215
[18] Tetienne J P, Hingant T, Kim J V, Diez L H, Adam J P, Garcia K, Roch J F, Rohart S, Thiaville A, Ravelosona D, Jacques V 2014 Science 344 1366
[19] Thiel L, Wang Z, Tschudin M A, Rohner D, Gutierrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973
[20] Sun Q C, Song T, Anderson E, Brunner A, Forster J, Shalomayeva T, Taniguchi T, Watanabe K, Grafe J, Stohr R, Xu X, Wrachtrup J 2021 Nat. Commun. 12 1989
[21] Dong Y, Du B, Zhang S C, Chen X D, Sun F W 2018 Acta Phys. Sin. 67 160301 (in Chinese) [董杨, 杜博, 张少春, 陈向东, 孙方稳 2018 物理学报 67 160301]
[22] Koehl W F, Buckley B B, Heremans F J, Calusine G, Awschalom D D 2011 Nature 479 84
[23] Mu Z, Zargaleh S A, von Bardeleben H J, Fröch J E, Nonahal M, Cai H, Yang X, Yang J, Li X, Aharonovich I, Gao W 2020 Nano Lett. 20 6142
[24] Wang J F, Yan F F, Li Q, Liu Z H, Cui J M, Liu Z D, Gali A, Xu J S, Li C F, Guo G C 2021 Nat. Commun. 12 3223
[25] Chen X, Luo Q Y, Guo P J, Zhou H J, Hu Q C, Wu H P, Shen X W, Cui R Y, Dong L, Wei T X, Xiao Y H, Li D, Lei L, Zhang X, Wang J F, Xiang G 2025 Adv. Funct. Mater. 35 2413529
[26] Gottscholl A, Kianinia M, Soltamov V, Orlinskii S, Mamin G, Bradac C, Kasper C, Krambrock K, Sperlich A, Toth M, Aharonovich I, Dyakonov V 2020 Nat. Mater. 19 540
[27] Gottscholl A, Diez M, Soltamov V, Kasper C, Sperlich A, Kianinia M, Bradac C, Aharonovich I, Dyakonov V 2021 Sci. Adv. 7 eabf3630
[28] Gottscholl A, Diez M, Soltamov V, Kasper C, Krausse D, Sperlich A, Kianinia M, Bradac C, Aharonovich I, Dyakonov V 2021 Nat. Commun. 12 4480
[29] Huang M, Zhou J, Chen D, Lu H, McLaughlin N J, Li S, Alghamdi M, Djugba D, Shi J, Wang H, Du C R 2022 Nat. Commun. 13 5369
[30] Healey A J, Scholten S C, Yang T, Scott J A, Abrahams G J, Robertson I O, Hou X F, Guo Y F, Rahman S, Lu Y, Kianinia M, Aharonovich I, Tetienne J P 2023 Nat. Phys. 19 87
[31] Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart T J, Machado F, Kobrin B, Hohn T O, Rui N Z, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin V V, Moore J E, Levitas V I, Jeanloz R, Yao N Y 2019 Science 366 1349
[32] Lesik M, Plisson T, Toraille L, Renaud J, Occelli F, Schmidt M, Salord O, Delobbe A, Debuisschert T, Rondin L, Loubeyre P, Roch J F 2019 Science 366 1359
[33] Yip K Y, Ho K O, Yu K Y, Chen Y, Zhang W, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Goh S K, Yang S 2019 Science 366 1355
[34] Bhattacharyya P, Chen W, Huang X, Chatterjee S, Huang B, Kobrin B, Lyu Y, Smart T J, Block M, Wang E, Wang Z, Wu W, Hsieh S, Ma H, Mandyam S, Chen B, Davis E, Geballe Z M, Zu C, Struzhkin V, Jeanloz R, Moore J E, Cui T, Galli G, Halperin B I, Laumann C R, Yao N Y 2024 Nature 627 73
[35] Wang M Q, Wang Y, Liu Z X, Xu G Y, Yang B, Yu P, Sun H Y, Ye X Y, Zhou J W, Goncharov A F, Wang Y, Du J F 2024 Nat. Commun. 15 8843
[36] Liu L, Guo J N, Hu D Y, Yan G Z, Chen Y Z, Yu L X, Wang M, Liu X D, Huang X L 2025 Phys. Rev. Lett. 135 096001
[37] Liu L, Wang J F, Liu X D, Xu H A, Cui J M, Li Q, Zhou J Y, Lin W X, He Z X, Xu W, Wei Y, Liu Z H, Wang P, Hao Z H, Ding J F, Li H O, Liu W, Li H, You L, Xu J S, Gregoryanz E, Li C F, Guo G C 2022 Nano Lett. 22 9943
[38] Wang J F, Liu L, Liu X D, Li Q, Cui J M, Zhou D F, Zhou J Y, Wei Y, Xu H A, Xu W, Lin W X, Yan J W, He Z X, Liu Z H, Hao Z H, Li H O, Liu W, Xu J S, Gregoryanz E, Li C F, Guo G C 2023 Nat. Mater. 22 489
[39] Du J F, Shi F Z, Kong X, Jelezko F, Wrachtrup J 2024 Rev. Mod. Phys. 96 025001
[40] Hamlin J J, Zhou B B 2019 Science 366 1312
[41] Dai J H, Shang Y X, Yu Y H, Xu Y, Yu H, Hong F, Yu X H, Pan X Y, Liu G Q 2022 Chin. Phys. Lett. 39 117601
[42] Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C, Prawer S 2014 Phys. Rev. Lett. 112 047601
[43] Christle D J, Falk A L, Andrich P, Klimov P V, Hassan J U, Son Nguyen T, Janzén E, Ohshima T, Awschalom D D 2014 Nat. Mater. 14 160
[44] Yu L X, Guo N J, Liu L, Liu W, Yan G Z, Cui J M, Tang J S, Li C F, Liu X D 2025 arXiv:2501.13757Mesoscale and Nanoscale Physics
[45] Zhong C, Mai D, Wang Y P, Wang H, Dai R C, Wang Z P, Sun X Y, Zhang Z M 2025 ACS Photonics 12 3717
[46] Mu Z, Fraunié J, Durand A, Clément S, Finco A, Rouquette J, Hadj-Azzem A, Rougemaille N, Coraux J, Li J, Poirier T, Edgar J H, Gerber I C, Marie X, Gil B, Cassabois G, Robert C, Jacques V 2025 Nat. Commun. 16 8574
[47] He G H, Gong R T, Wang Z P, Liu Z Y, Hong J H, Zhang T X, Riofrio A L, Rehfuss Z, Chen M F, Yao C Y, Poirier T, Ye B T, Wang X, Ran S, Edgar J H, Zhang S X, Yao N Y, Zu C 2025 Nat. Commun. 16 8162
[48] Wen J, Xu Y, Wang G, He Z X, Chen Y, Wang N, Lu T, Ma X, Jin F, Chen L, Liu M, Fan J W, Liu X, Yu Pan X, Liu G Q, Cheng J, Yu X 2025 Nati. Sci. Rev. nwaf268
[49] Liu G Q 2025 Acta Phys. Sin. 74 117601 (in Chinese) [刘刚钦 2025 物理学报 74 117601]
[50] Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624
[51] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493
[52] Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579
计量
- 文章访问数: 6
- PDF下载量: 1
- 被引次数: 0








下载: