

模拟核弹头核查中能谱遮盖技术的概念研究

刘素萍 胡广春 龚 建 郝樊华 向永春

(中国工程物理研究院核物理与化学研究所, 绵阳 621900)

(2001 年 2 月 23 日收到 2001 年 4 月 2 日收到修改稿)

建立了一套基于局域网的核弹头核查系统. 系统的硬件组成为: 一台网络服务器、两台个人计算机和一台便携式高纯锗 γ 谱仪. 系统的软件(能谱遮盖软件)包括核查方软件、被核查方软件两个模块, 它们都采用交互式人机对话. 通过局域网进行通讯. 核查中, 探测器所采集的高分辨 γ 射线能谱需要经过被核查方软件的防泄密处理后, 才能以遮盖能谱或文字显示方式发送给核查方终端. 能谱遮盖的原则是, 对核查方要求核查的能段, 核查方软件必须提供真实、客观的显示, 而对其他能段, 可根据被核查方对“敏感信息”的认识, 作适当的遮盖处理. 文字显示方式则是直截了当地回答核查对象是“铀弹”、“钚弹”或“非核弹”.

利用能谱遮盖软件对模拟核弹头进行了类型识别和能谱遮盖实验. 实验结果表明, 所建立的基于局域网的核弹头核查系统具有识别模拟核弹头类型和在核查中保护敏感信息泄漏的功能, 特别值得指出的是, 核查结果文字显示方式具有较好的防泄密功能, 有助于提高核查可信度. 实验同时也暴露了该系统的一些不足点, 如系统组件过多, 集成度不够, 被核查方软件的人机交互对话和核查结果的能谱遮盖显示方式可能降低核查的可信度等等.

关键词: 核弹头核查, γ 射线能谱, 能谱遮盖

PACC: 0150M, 0650D

1 引 言

核弹头的设计信息是非常敏感的, 任何有关核弹头核查的问题都不可避免地要面对这样的冲突: 一方面, 核查方希望获得尽可能全面、详细的信息, 作出客观、真实的核查判断; 另一方面, 被核查方则希望给出有限的信息, 在履行条约义务的同时, 尽量避免敏感武器设计信息在核查过程中泄漏给核查人员. 解决这对冲突的关键在于, 正确权衡核查中允许获得的信息量, 既能保证核查方达到核查目的, 又能保护被核查方的敏感信息. 这就要求任何一个可实用的核查系统要同时具备核查有效性和限制入侵性两个特点^[1].

核弹头核查系统的核查有效性是指, 它能正确无误地判断出核查对象是不是申报的项目, 或者是不是有违约行为发生. 由于核弹头内部核材料的 γ 射线辐射, 传统的 γ 射线探测器, 如 NaI、高纯锗, 在特定条件下, 能够提供足够的信息, 具有一定的核查可信度^[2]. 但它们能否被应用到核弹头控制的有关条约中还取决于它的入侵性大小. 所谓入侵性是指, 用该种探测方法能够多大程度地反映出核弹头的内部结构和有关武器性能指标. 任何一种入侵性太强

的核查技术方案, 无论它的核查有效性有多强, 都不可能为被核查方所接受.

一些传统的辐射探测技术具有可靠的核查有效性, 且技术成熟、普及. 如果能够将它们与有效的防泄密措施结合起来, 对其核查入侵性进行限制, 就有可能将其应用到核弹头的核查中^[3].

2 能谱遮盖软件的设计原理和编制

软件设计必须考虑核查双方的不同需求, 既要让核查方达到核查目的, 确定核弹头(或指定类型的核弹头)的存在与否, 又要防止核弹头敏感信息在核查过程中泄漏给核查人员. 为此, 我们建立了一套基于局域网的核弹头核查系统. 该系统由一台服务器、两台计算机终端和一台便携式高纯锗 γ 谱仪构成, 其中与便携式高纯锗 γ 谱仪直接相接的终端既作实时测量的数据处理系统, 又作被核查方的工作终端; 另一台则作为核查方的使用终端. 系统构成框图如图 1 所示.

系统引入了信息壁垒^[4,5]的概念, 将保密数据的采集、处理过程和非保密显示界面通过硬件、软件和核查规程等手段分离开来. 从硬件上, 系统利用两台个人计算机将核查双方的使用终端分离开来; 从软

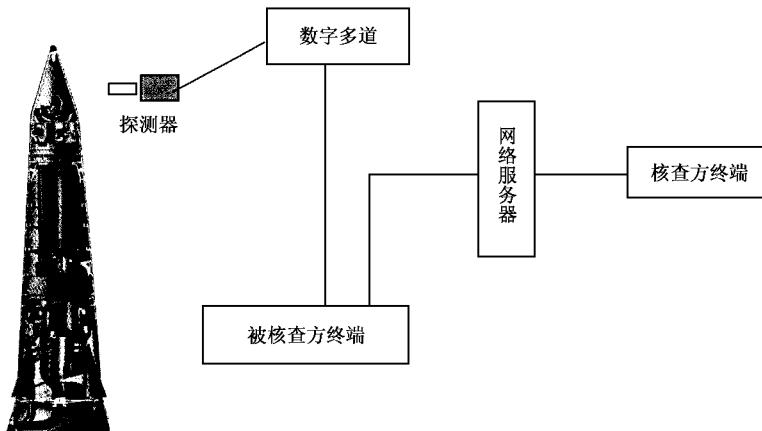


图1 系统构成图

件上,探测器所采集的高分辨 γ 射线能谱需要经过被核查方软件的防泄密处理后,才能以遮盖能谱或文字显示方式发送给核查方终端;从核查规程上,该系统建立在如下的现场核查情景中:在被核查方工作人员的陪同下,核查人员根据现场核弹头核查的探测器使用细则安装好探测器,然后在核查方终端上输入核查内容和所期望的核查结果显示方式(能谱或文字),并就地等待最后结果的显示。

能谱遮盖软件分为核查方软件和被核查方软件两个模块,分别安装在核查方终端和被核查方终端。这两个模块都采用交互式人机对话,通过局域网进行通讯。

能谱遮盖软件为核查方提供了能谱核查结果显示方式。在这种情况下,能谱遮盖软件须有能力及时“遮盖”掉满足核查要求以外的“敏感信息”。具体地讲,该系统只对特定核查能段 $E_k \pm \Delta E_k$ 的能谱(其中 E_k 为 ^{235}U 的186 keV, ^{239}Pu 的414 keV,(ΔE_k 不超过3 keV)提供真实的能谱显示,而对核查能段之外的携带敏感信息的特征能峰作遮盖处理。待遮盖的敏感信息特征峰存放在被核查方计算机终端上的“敏感信息文件”中。

能谱遮盖软件也为核查方提供了文字核查结果显示方式,如简单回答“非核弹”、“铀弹”或“钚弹”等等。在这种情况下,被核查方的计算机终端需建立一个“核弹头标准判据”。遮盖软件有能力根据核查输入要求自动将探测器的探测数据与相应的标准判据作比对,然后给出文字结论。

为了让核查方有机会对整套软件系统进行验证(如,以标准放射源代替待核查的核弹头),在核查方软件的初始界面中,我们除提供“核查”选项外,还特

意增加了“系统检验”选项。当核查方选择“系统检验”选项时,核查方终端将出现“请输入密码”的要求。这样经授权的核查方可观测到未经遮盖处理的标准源原始 γ 谱。通过对比“系统检验”下所获得的原始 γ 谱和“核查”选项下的遮盖能谱,核查人员可以验证核查系统对要求核查的能段是否提供了真实的显示。

3 能谱遮盖软件的实验结果

我们利用能谱遮盖软件对实验室模拟核弹头进行了类型识别和能谱遮盖实验。模拟核弹头由一组同心半球壳元件组成。实验中,我们先后组装了三个模拟核弹头,它们的组成见表1。

表1 实验室模拟核弹头的组成^[6]

模拟核弹类型	组成元件
“钚弹”	$^{239}\text{Pu} + \text{Be} + ^{238}\text{U} + \text{MNZY}^* + \text{Al} + \text{Fe}$
“铀弹”	$^{235}\text{U} + ^{238}\text{U} + \text{MNZY} + \text{Be} + \text{Al} + \text{Fe}$
“非核弹”	$\text{Be} + ^{238}\text{U} + \text{MNZY} + \text{Al} + \text{Fe}$

* MNZY 模拟炸药。

实验对表1中的三个模拟核弹头分别进行了核查,每次核查方终端核查结果的文字显示都与所选模型一致。实验结果表明,能谱遮盖软件的核弹头类型识别功能是可靠的。

实验中,我们也对核查结果能谱显示方式进行了检验,并从所获得的能谱中轻易地判断出核查对象的类型。当核查对象是“铀弹”时,在显示的能谱上能清晰地看到 ^{235}U 的186 keV特征峰(参见图2b));当核查对象是“钚弹”时, ^{239}Pu 的414 keV特征峰清晰可见,而当核查对象是“非核弹”时,186,414 keV两个特征峰都不存在, ^{238}U 的1001 keV特征峰却较明显。

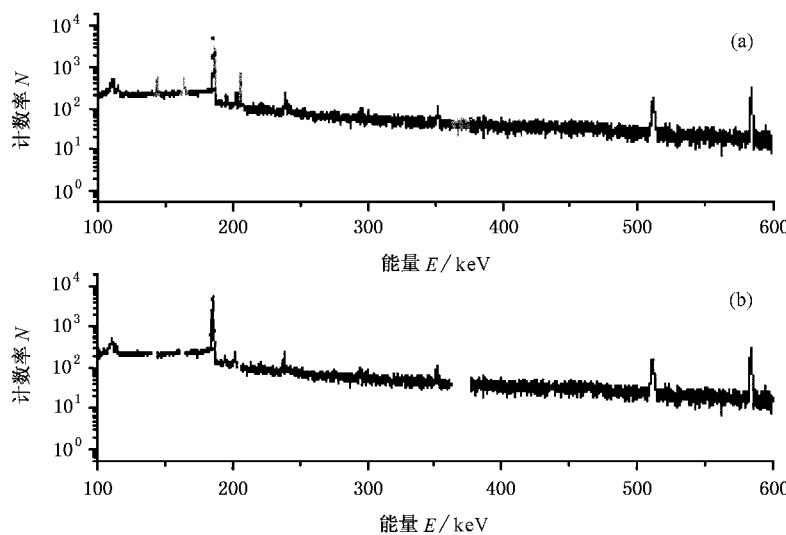


图2 遮盖能谱图 (a)为未经遮盖处理的原始 γ 射线能谱 (b)为经过遮盖处理后的能谱图,图中粗点化线部分表示要求核查的能段,浅色区域是需要遮盖的敏感信息

值得注意的是,在能谱显示状态下,核查能段183—189 keV—410—417 keV(图2(b)粗点化线部分)的显示是真实的、客观的、没有经过任何处理的;而在这两个区域之外,一些被核查方认为是携带敏感信息的能峰数据则被随机篡改,失去了真实意义,从而起到了在核查过程中保护敏感信息泄漏的作用。为了增大对比显示度,实验中我们将“随机篡改”变成了“修改为0值”,故而在图2(b)的谱图中出现了一些空缺谱段。图2(a)是未经遮盖处理的原始 γ 射线能谱,其中粗点化线部分代表要求核查的能段,浅色区域是需要遮盖的敏感信息。原始 γ 射线能谱是在“系统检验”状态下,经过被核查方授权许可后获得的。图2(a)和(b)的对比生动形象地说明了遮盖软件是如何在满足核查要求的同时保护敏感信息的。

4 讨 论

实验结果表明,我们所建立的局域网核弹头核查系统具有识别模拟核弹头类型和在核查中保护敏

感信息泄漏的功能,但它是否对真的核弹头也有效呢?

能谱遮盖软件的两个模块都采用人机交互式对话,这不仅使系统显得零散,而且影响了核查的可信度。

用文字显示核查结果是防泄密的一个较好途径,但用遮盖能谱的方式显示核查结果却让人感到不太放心:被核查方是不是对要求核查的能段也做过什么手脚呢?尽管软件设计中考虑了用“系统检验”的办法说服核查方,但总难彻底消除疑虑。此外,在显示的遮盖能谱中,只有个别特征峰的显示是真实的、有价值的,它们的本质内涵完全可以通过别的方式,如文字结果显示方法,描述出来。

该系统的不足之处在实验中暴露无遗,尽管如此,它的开发却意义深远。它的最成功之处在于,利用局域网将保密数据收集、分析和非保密显示分离开来,换言之,引入了信息壁垒的概念。不仅如此,通过此系统的建立,发展了我们对能谱数据的后处理能力和应用软件的开发能力,为今后系统集成,使被核查方终端消失,提高核查的可信度奠定了基础。

[1] K. P. Ziolk, C. J. Hailey *et al.*, *IEEE Trans. Nucl. Sci.*, **39** (1992), 1046.

[2] Stanley K. Fraley, Sandia National Laboratories, “Nuclear Arms Reduction Verification Technology.”

[3] Diana G. Langner, Nancy Jo Nicholas *et al.*, “Complementary Technologies for Verification of Excess Plutonium,” *40th Annual Meeting Proceedings of Nuclear Material Management*(Phoenix, Arizona, July 25—29, 1999).

[4] Duncan MacArthur , M. William Johnson *et al.* , " Use of Information Barriers to Protect Classified Information , " 39th Annual Meeting Proceedings of Nuclear Material Management (Naples , Florida , July 26—30 , 1998).

[5] R. Whiteson , D. W. MacArthur , Information Barriers in the Trilateral Initiative : Conceptual Description (LAUR-98-2137 , June , 1998).

[6] X. W. Du , Science and Technological Groundwork for Nuclear Arms Control (National Defense Industry Press , Beijing , 1996) , p. 118 (in Chinese) [杜祥琬 , 核军备控制的科学技术基础(国防工业出版社 , 北京 , 1996) , 第 118 页].

CONCEPTUAL STUDY OF SPECTRAL BLANKOUT TECHNIQUE ON INSPECTING OF SOME SURROGATED NUCLEAR WARHEADS

LIU SU-PING HU GUANG-CHUN GONG JIAN HAO FAN-HUA XIANG YONG-CHUN

(Institute of Nuclear Physics and Chemistry , China Academy of Engineering Physics , Mianyang 621900 , China)

(Received 23 February 2001 ; revised manuscript received 2 April 2001)

ABSTRACT

We built up a nuclear warhead verification system based on an Intranet platform. The hardware of the system consists of an Intranet server , two personnel computers and a portable high purity germanium gamma – ray spectrometer. The software , Blanking – out , is made of two modules designed for the inspecting and inspected parties respectively . Both modules are interactive and communicate through the Intranet. When the system operates , any sensitive information carried by the high resolution gamma-ray spectrum collected by the detector will be meddled by the inspected module before the package of spectral data is sent to the inspecting module to prevent a disclosure of sensitive information. After receiving the spectral data , the inspecting module will display on the screen of the inspecting PC terminal the verification results in a form of blankouted spectrum(spectral blanking – out form) or a form of a piece of phrase(phrase form). The guideline to the spectral blanking-out is that : for those ranges of energy obligated to be inspected , the inspected module should ensure that the inspecting module can display truly their objective spectrum ; and for the other ranges of energy , the inspected module can blankout certain parts of the spectra based on the knowledge of sensitive information. Phrase form is rather straightforward , answering the question whether the inspected warhead is a " uranium-type " , " plutonium-type " or " non-nuclear type . "

We conducted a demonstration on some surrogates for nuclear warheads to see whether the nuclear warhead verification system possesses the capability of identifying the type of a warhead and blanking-out sensitive spectral information. The demonstration was carried out successfully . Phrase form is especially recommendable due to its stronger capability to prevent sensitive information from disclosure and its higher verification credibility . The demonstration also disclosed some deficiencies of the system , such as too much disintegrated hardware components lower the integration of the system , the interactive operation of the inspected module and the spectral blanking-out form decrease the verification credibility and so on .

Keywords : nuclear warhead verification , γ -ray spectrum , spectral blanking-out

PACC : 0150M , 0650D