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用固相反应法和脉冲电流直接通电烧结法制备了 )*+,& -).#复合材料，其组分通过粉末 /射线衍射法确定，+01
分析表明 ).#颗粒是均匀地分布在 )*+,&基体中 2 在 &##—3##4范围内测量了材料的电导率、赛贝克系数和热导率，

研究了纳米颗粒的尺寸和分布状态对复合材料热电性能的影响 2 外加的 ).#纳米颗粒在高温时降低了复合材料的

晶格热导率，而对电传输性能影响较小，从而有效地提高了复合材料的热电性能 2 与 )*+,&相比，)*+,& 5 .6$%7).#

复合材料的 !"值提高了 %#7 2
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! 6 引 言

热电转换技术是利用半导体材料的赛贝克效应

和帕尔帖效应进行热能和电能互相转换的技术 2 热
电材料的性能由无量纲优值 !" 来表示：!" 9
!""" -#，其中!是热电材料的温差电动势，即赛贝克
系数，"是电导率，#是热导率，" 是温度 2 近年来方
钴矿化合物（:;<==>?<@A=>）热电材料引起了人们极大
的兴趣［!—%］2 二元 :;<==>?<@A=> 化合物的化学式为
#$&，其中 #可以是 )*，B?或 CD，$可以是 E，8:或

+,原子 2 它具有体心立方结构，每个单位晶胞内含
有 &" 个原子和两个较大的 +, 二十面体空洞 2
:;<==>?<@A=>化合物具有很高的载流子迁移率、很好
的电导率和赛贝克系数，但是晶格振动（声子）对热

导的贡献太大，导致它们的热电性能指数 !" 值偏
低［!］2 为了降低晶格热导率，可以通过元素固溶引
入缺陷对晶格声子进行散射［$—3］，也可以在

:;<==>?<@A=>化合物的 +, 二十面体空洞中填入稀土
族或者碱土族原子，通过填充原子的扰动作用来散

射晶格声子，达到降低热导率的目的［"，%，(—!.］2 引入
其他杂质相是降低热导率的另一种常用方法［&］，理

论预测当外加颗粒的尺寸足够小时，复合材料的热

导率将大幅度下降而不影响其电传输性能［!’］2 目前
此类复合材料研究很少，未见报道 2 本工作尝试合
成了 ).#纳米颗粒在 )*+,&基体中均匀分布的复合材
料，并研究了纳米颗粒的尺寸和分布状态对热电传

输性能的影响 2

" 6 实 验

复合材料 )*+,& 5 %7).#（质量百分比）按以下

方法合成 2 高纯度 +,（((6((((7），)*（((6((7），
).#（((6$7，F !##GH）粉末作为原料粉，按 )* I +, 9
!I&的摩尔比和 %7).#混合均匀，% 取 #，"，%，3，压成
块后在 (%&4反应 ’"D2 所有反应均在 8?气保护下
进行 2 得到的反应产物用脉冲电流直接通电烧结法
（+E+）在 3%34 下烧结 !$HAG 得到 )*+,& -).# 复合

材料 2
合成的材料组分由粉末 /射线衍射法确定，材

料的霍尔系数用 JKG@>? EK<L法于真空下测量，载流
子浓度根据 & 9 !-’M ( 计算得到 2 电导率用直流四
端子法在 8?气下测定，通过给定温度下 $个不同温
差（$—!#4）产生的热电势!)，做!)N!" 图，得到
的斜率为赛贝克系数（!）2 热导率用激光微扰法在
8?气氛下测得 2 所有的测量都是在 &##—3##4范围
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内进行 !

" # 结果和讨论

!"#" 复合材料的合成和 $%&颗粒的分布状态

由于在 $%"&以上时 ’()会升华
［*+］，其在复合材

料中的确切含量用化学法测定 ! 所加 ! 为 )，,，-，+
时，复合材料中实际对应的 ! 分别为 )，)#.$，,#+"
和 (#$- !

图 * ’/01"和 ’/01" 2 ,#+"3’()复合材料的 4射线衍射

图谱

图 *是固相反应产物 ’/01"和 ’/01" 2 ,#+"3’()

的 4射线衍射结果，反应后产物的衍射峰只有 ’/01"
的峰，没有其他杂质相，说明固相反应得到了很好的

’/01"晶体 ! 尽管 4射线衍射图谱中没有 ’()的峰，但

图 ,中背散射电子成像分析表明固相反应后的产物
里，’()是比较均匀地分布在 ’/01"基体中 ! 图中白色
背景为 ’/01"基体，分散的黑色颗粒是 ’()，纳米颗粒

的 ’()大部分发生了团聚，而且所加的 ’()颗粒越多，

团聚现象越严重，但仍然有很多细小的颗粒存在，表

明在 ’/01"基体中分散的 ’()颗粒尺寸是分布在一个

很宽的范围内 ! 用 5678特征 4 射线扫描表明，大
部分 ’()颗粒分布在 ’/01"的晶界上，只有极少一些
小颗粒纳米粒子分布在 ’/01"晶体内 !

!"’" 复合材料的电传输性能

图 "是 ’/01" 2 !3’()的电导率随温度变化图 !
从图中可以看到，在室温时，’()的复合大大降低了

’/01"的电导率，’()含量越多，电导率降得越多 ! 随

图 , 复合材料的 057 图像 （9）为 ’/01" 2

)#.$3’()；（1）为 ’/01" 2 ,#+"3 ’()；（ :）为

’/01" 2 (#$-3’()

着温度的上升，’/01"和复合材料之间的电导率差额
变小，在高温（+))&以上）时相差极少而趋于一致 !
图 -是低温下的载流子迁移率，复合材料的载流子
迁移率比 ’/01"下降了很多，说明复合材料电导率下
降的原因主要是所加的 ’()颗粒对载流子产生了散

射，导致载流子迁移率的下降 ! 外加的 ’()颗粒作为

一种缺陷，在低温和室温附近对载流子的散射占重

要地位，因而电导率变化很大；而在高温，主要是晶

格声子对载流子进行散射，缺陷散射的作用减小，所
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以高温时 !"#含量的改变和分布状态对电导率影响

减弱［$%］& 图 ’ 中，!()*+在 ,##-时载流子迁移率达
到了最大值，这与已报道的 .型 !()*+的低温电传输
性能一致［/］& 而复合材料的载流子迁移率则随温度
的提高一直在增大 & 表明复合材料中载流子的散射
机理明显不同于 !()*+，纳米粒子 !"#的引入对载流

子添加了其他类型的散射 & 尤其是 !()*+ 0 "12’3
!"#复合材料，载流子迁移率随温度变化不同于其他

复合材料，其散射机理有待于进一步研究 &

图 + !"#含量和温度对复合材料电导率的影响

图 ’ !"#含量和温度对复合材料载流子迁移率的影响

+##—/##- 范围内复合材料的赛贝克系数比
!()*+有所增加，如图 2 & 这是由于 !"#粒子对基体晶

格声子的散射作用更明显，声子曳引的作用有助于

提高赛贝克系数［,#］& 与其他方法不同［’—$’］，采用 !"#

分散在 !()*+基体中制得的复合材料的电导率和赛
贝克系数随温度变化趋势与 !()*+基本一致 & 其中

!()*+ 0 "12’3!"#复合材料极大地提高了赛贝克系

数，并且峰值也发生了左移，这与它的载流子散射机

理不同于其他复合材料相吻合 &

图 2 !"#的含量和温度对复合材料赛贝克系数的影响

图 " !"#的含量和温度对复合材料热导率的影响

!"!" 复合材料的热导率

复合材料热导率随温度变化如图 " 所示 & 在
!()*+基体中复合的 !"#颗粒作为一种缺陷极大地降

低了热导率，随着 !"#含量的增加热导率下降越多 &
热导率由晶格热导率和载流子热导率两部分组
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成，即

!!"!#$ %!& ’!( ) （*）
载流子热导率可以由 +,-.-/#00123#04定理求出

!( % !5 " 6"， （7）
其中 !5是 &"3-04常数，为 789: ; *5< = >7 6?7，" 是温
度，"是电阻率 ) 根据实测的热导率减去计算所得
载流子热导率，就得到了晶格热导率，如图 @ ) A@5颗

粒的引入对载流子热导率的影响并不明显，其对热

导率的贡献主要是降低了晶格热导率，它作为一种

外加的缺陷能有效地降低晶格声子的自由程 ) 若没
有其他的散射，且分散在基体中的纳米颗粒为球形，

则有

# % $ 6@%， （B）
# 为声子平均自由程，$ 为纳米颗粒直径，% 为它的
体积分数［*C］) A@5含量越多，颗粒越小，晶格声子平

均自由程越短，晶格热导率也就越小 ) 因此增加分
散相的含量和提高其分散程度有利于降低晶格热导

率 ) 外加粒子作为一种缺陷对晶格热导率的影响机
理尚有待于进一步地研究 )
根据测量的电导率、赛贝克系数和热导率，计算

了复合材料的 &" 值如图 C，A"DEB的 &" 最高值在

@:5?左右（&" % 58*:），在此温度附近及以下，复合
材料的 &" 值与 A"DEB相差不多，这是因为分散的

A@5颗粒虽然降低了晶格热导率，但同时也降低了电

导率 ) 在高温时，电导率下降幅度减少，而热导率的
降低幅度几乎维持不变，此时复合材料的 &" 值比
A"DEB高 ) 其中 A"DEB ’ @8:9FA@5复合材料的 &" 峰
值左移到了 @55?，达到了 587*，比 A"DEB提高了

95F )

图 C A@5的含量和温度对复合材料 &"值的影响

98 结 论

我们合成了 A@5分散均匀的 A"DEB 6A@5复合材料，

复合物的热电传输性能与 A"DEB相似 ) 在基体中充
分分散的 A@5颗粒降低了材料的电导率和热导率，声

子曳引的作用使复合材料的赛贝克系数稍有提高 )
外加颗粒在高温时（=55?）对电导率的影响减弱，但
仍然有效地降低了晶格热导率，从而提高了复合材

料的热电性能 ) 与 A"DEB相比，A"DEB ’ @8:9F A@5复

合材料的 &" 值提高了 95F ) 若能制得 A@5颗粒分

散更好的复合材料，将可能获得更高性能指数的热

电材料 )
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