

弯张换能器装配预应力及入水后的变化 *

贺西平^{1,2)} 李 斌³⁾

¹⁾ (陕西师范大学物理与信息技术学院, 西安 710062)

²⁾ (西安交通大学机械与结构强度国家重点实验室, 西安 710049)

³⁾ (西北工业大学航海工程学院, 西安 710072)

(2002 年 9 月 29 日收到 2003 年 3 月 27 日收到修改稿)

精确控制施加于驱动元件上的预应力, 对换能器的设计及其工作过程都有重要意义, 特别对于稀土磁致伸缩换能器来说, 有助于发挥其最大潜能. 利用有限元方法, 计算了 VII 型水声弯张换能器壳体给驱动元件施加一定预应力时, 壳体所需的装配位移的大小, 并通过实验作了验证, 弯张换能器随入水深度的不同, 驱动元件两端所受到的总的预应力是不同的. 利用有限元方法, 计算了换能器入水深度与预应力的关系. 本文方法可适合于其他任何类型的换能器.

关键词: 弯张换能器, 装配位移, 预应力, 入水深度

PACC: 4300, 9210V, 4390

1. 引言

文献 [1,2] 对低频大功率 VII 型弯张换能器作了理论及其实验方面的研究, 换能器是用稀土磁致伸缩棒驱动的. 目前这种材料被人们普遍认为是研制下一代低频大功率水声换能器的首选工作材料^[3,4]. 为使稀土棒能在最大潜能状态工作, 需要对其施加最佳的预应力^[4] (由此调节其相对应的最佳工作偏磁场). 这就引出两个问题: 换能器装配时(一般在空气中进行)施加于有功元件上的初始预应力如何控制, 其二, 假设装配好后(设初始装配的预应力为 T_0) 随着换能器入水深度的增加, 由于 VII 型弯张换能器呈凹形, 加于稀土棒上的预应力也将相应增大, 稀土棒所需要的最佳工作偏磁场也要随之增加. 那么, 入水深度与棒上预应力的增加之间有什么关系, 换句话说, 如果要能使换能器在不同水深度处都能很好地工作, 就必须搞清楚入水深度与稀土棒上预应力增加之间的变化关系.

水声弯张换能器加于驱动元件上的预应力, 可在壳体的拉伸状态下进行装配后, 通过壳体本身的张紧而直接施加, 施加预应力的方式及其如何施加的夹具也构成了换能器研究中的重要环节^[5]. 某些

换能器壳体是一闭合曲面, 例如, IV 型为椭圆管形, V 型是两个球冠组合而成的, 像是蛤壳形, VII 型的环形截面很像一葫芦形状. 壳体施加给驱动元件预应力的大小, 与壳体的张紧程度(以装配位移来描述)、壳体材料、尺寸等因素有关. 如何计算通过弯张壳体施加于驱动元件上的预应力, 尚未见这方面的报道. 本文用有限元方法, 对 VII 型弯张换能器壳体的装配位移进行了理论计算, 并通过初步实验作了验证.

在一定入水深度下, 计算稀土棒两端的应力大小时, 不能简单地认为在初始预应力 T_0 的基础上, 附加了水的静压力. 事实上, 由于水静压力的作用, 将会导致换能器壳体及其上下盖板产生形变, 由此附加于棒上的等效预应力值将大大超过水作用的静压力值. 本文利用有限元方法, 研究了入水深度与稀土棒上预应力的增加之间的变化关系.

不失一般性, 本文采用的方法, 可适合于其他任何类型的、任何有功元件的换能器.

2. 装配预应力

2.1 装配预应力的计算

如图 1(a) 所示, VII 型弯张换能器壳体是以 xz 平

* 陕西省科学基金(批准号 2000SL11)资助的课题.

面为对称面的对称形体(这里取其一半)图1(b)是该1/2壳体有限元剖分网格示意图。(a)图为其 xy 平面视图,可看出该图中沿壳体轮廓线的外部顶端有两个凸起的平台(平台的尺寸长为55mm,宽54mm,高60mm)这是为方便拉开壳体并装配驱动元件而专门

预留用的(装配完驱动元件后可在机床上车削掉)。驱动元件轴向沿 y 轴方向放置,对应的壳体平台位置各装配两根,共有四根,沿高度方向(z 轴方向)上下错开,相距80mm,每根稀土棒的半径为10mm(驱动元件亦可为压电陶瓷堆或其他有源材料)。

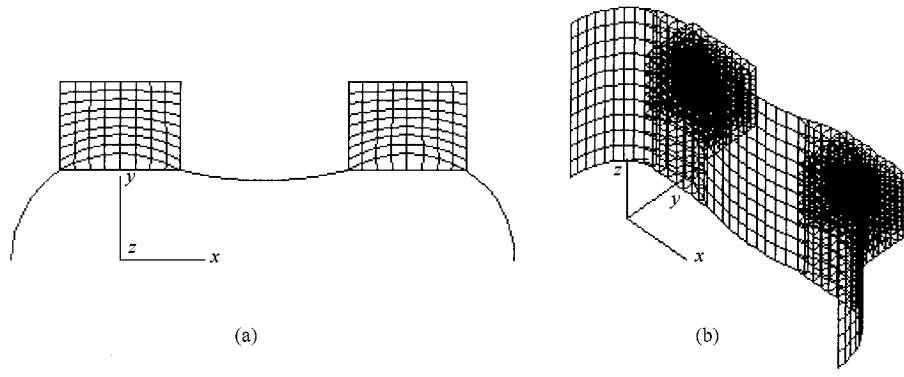


图1 半个V型弯张换能器壳体的有限元剖分示意图

因壳体是一对称形体,取1/2壳体,并给其边缘加约束条件,就可消除刚体位移。在进行有限元剖分时,壳体采用四节点薄壳单元,壳体平台采用八节点三维块体等参单元。在将要装配的驱动元件棒与壳体的接触点处,添加与要施加的预应力数值相等、方向相反的集中力载荷 G ,整个壳体在沿装配点所施加的拉伸力作用下产生变形。

本文中,V型弯张换能器壳体的最大尺寸为290mm×130mm×160mm(长×宽×高),壳体厚度为10mm,材料为优质航空铝合金(代号为LD-10)。

将施加的拉伸集中力作为外载荷移置到节点上去,根据虚功原理,有

$$\begin{aligned} (\{\delta_e^*\})^T \{R_e\} &= \{f^*\}^T \{G\} \\ &= (\{\delta_e^*\})^T [N]^T \{G\}, \end{aligned} \quad (1)$$

得到

$$\{R_e\} = [N]^T \{G\}, \quad (2)$$

式中(δ_e^*)为图1中被划分的组成壳体各单元的虚位移列阵,等号左边表示作用到单元上的等效节点力 $\{R_e\}$ 所做的虚功,等号右边表示集中力 $\{G\}$ 所做的虚功, $\{f^*\}$ 为单元的位移函数,[N]是单元的形函数矩阵。

根据表征节点力与节点位移之间关系的刚度方程,组成1/2壳体各节点在拉伸集中力作用下产生的位移列阵 $\{\delta\}$ 可由下式确定:

$$[K]\{\delta\} = \{R\}, \quad (3)$$

$[K]$ 为整体刚度矩阵, $\{R\} = \sum_{e=1}^{n_e} \{R_e\}$ 为全部单元的等效节点力, n_e 为壳体划分的单元数, $\{\delta\}$ 为由各单元 $\{\delta_e\}$ 所组成的总位移列阵。输入壳体的材料特性数值,添加与要施加的预应力数值相等、方向相反的集中力载荷 G ,并解方程(3),即可得出拉伸集中力作用点处沿 Y 方向的位移,即装配位移值 Δy 。

实际计算中,将整个1/2壳体划分为420个薄壳单元和928个块体单元。

2.2. 测试装置

为测试壳体的弹性性能,以确定其两端面位移随拉伸力的作用规律,本文对壳体作了弹性测试。

如图2所示,为了使壳体测试方便,在其两侧预留了四个长为55mm、宽为54mm、高为60mm的平台(位于壳体的高度方向正中)。各平台有共轴中孔,杠杆穿过该中孔和销子A,由电子万能实验机通过销子A施加拉伸载荷 P (载荷 P 的大小及其施加的速度可由万能实验机智能控制,并通过它的数码显示器直接读出),杠杆是一直径为25mm的实心钢棒。壳体随拉伸载荷 P 产生的相应位移形变,电子引伸计可将该位移形变转换为电信号送到XY记录仪中,记录出载荷 P 与壳体的位移之间的关系曲线。

电子引伸计型号为YZU-5010,为冶金部金属材料力学计量站产。电子万能实验机及与其相配套的XY记录仪由长春实验机研究所产,型号为CSS-

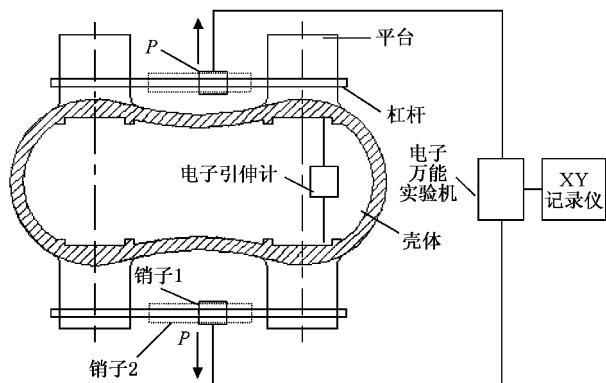


图2 壳体的弹性测试曲线

1110. 销子1和杠杆为自加工.

2.3. 测试结果

壳体弹性测试结果如图3中“○”所示，并用实线将其连接起来。实验过程中，控制万能实验机施加载荷 P 的作用速度为 0.3mm/min 。由图3可以看出，在所做的拉伸载荷为 $0\text{--}30\text{kN}$ 范围内，壳体的位移形变都呈线形变化，这说明都在弹性范围内。事实也正是如此，实验完成后与实验前相比，壳体两端面被拉长的、不能恢复的位移形变仅为原长的 0.2% 。

2.4. 实验与理论计算的比较

在上面理论计算部分，已计算了在壳体带平台时，被装配的驱动元件所在的四个节点位置各施加预应力为 $P/4$ 时（也即是作用在图2中的销子1上的载荷为 P ），壳体产生的理论位移值，如图3中的“■”点所示，并用实线将其连接起来。例如，由图3可看出，壳体给每根稀土驱动元件棒（或压电陶瓷堆）施加预应力为 12MPa （合 $P/4 = 3.7699\text{kN}$ ）时，壳体需要被拉开的距离为 1.23mm ；实验结果显示，在壳体带有四个平台的情况下，拉伸载荷为 12MPa 时，壳体被拉开的位移为 0.890mm ，两者的绝对误差为 0.34mm ，误差原因分析如下。

2.4. 误差分析

由图3可看出，实验测试位移值比理论计算位移值要小，这主要是由于实验模型和计算模型之间的不一致造成，也就是说，计算时加的是集中力，完全考虑的是壳体的平动，而图2的实验模型中，杆杠会受到壳体平台的弯矩作用，壳体不只是有平动变形，还有弯曲变形，载荷越大，弯曲形变也越大，这在

图3 拉伸载荷与装配位移的关系（“■”为理论计算值，“○”为第一次实验测试值，“△”为第二次实验测试值）

实验过程中能观察到：实验发现原本平直的、直径为 25mm 的实心杆杠有一定的挠度，即与壳体平台相连接的地方发生弯曲，幅度有 1.5mm 左右。要减小杠杆的挠度，杠杆必须加粗才可。图3显示随着拉伸载荷的增大，理论计算曲线与实验曲线两者误差增大，主要就是壳体产生了累加弯曲。这也是拉伸载荷为 12MPa 时，实验值与理论计算值两者的绝对误差为 0.34mm 的原因。而理论计算是建立在理想的平动模型基础上的。

为了尽量减小壳体的弯曲变形带来的累加弯曲效应，对上面实验进行了改进：第一，加宽了施加载荷的销子1，而替换为如图2中虚线表示的销子2，以便载荷能更加均匀地作用在杠杆上；第二，加粗了原杠杆，将上面直径为 25mm 的实心钢杠杆换成直径为 32mm 的实心钢杠杆。再做上述实验，实验曲线如图3中的“△”表示的各点，可见，这次实验点连接的曲线更接近理论值连接起来的曲线。拉伸载荷为 12MPa 时，第二次实验值与理论计算值两者的绝对误差为 0.13mm 。

在安装驱动元件时，在其两端夹塞一厚度为“ Δy （装配位移）”的金属契块，便会给驱动元件施加一相对应的预应力值。

3. 入水深度变化时的预应力

3.1. 变化的预应力计算

工作的换能器是加了上下盖板的，同样，为消除刚体位移，取半个整体换能器进行计算，如图4所示。在 $1/2$ 换能器半分界面边缘上及稀土棒的端头施加约束条件。

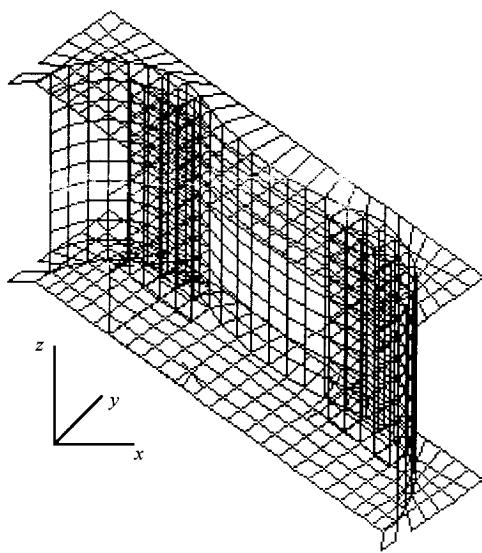


图4 取1/2换能器,计算入水深度与加于稀土棒两端等效应力之间的关系

在 h 米深度换能器外表面受到水的静压表面力(即压强)为 ρgh ,利用虚功原理将其移植到组成半个换能器的各单元的节点上去:

$$(\{\delta_e^*\} \{F_e\}) = \int \{f^*\} \{q\} dA = (\{\delta_e^*\} \{q\}) \int [N] dA, \quad (4)$$

式中等号左边表示单元等效节点力 $\{F_e\}$ 所做的虚功,等号右边表示表面力 $\{q\}$ 所做的虚功,这里面力 $\{q\}$ 为常数,可以提到积分号外面,即

$$\{F_e\} = \{q\} \int [N] dA. \quad (5)$$

与方程(3)一样,各节点在水压表面力作用下产生的位移列阵 $\{\delta\}$ 为

$$[K] \{\delta\} = \{F\}, \quad (6)$$

式中 $[K]$ 为整体刚度矩阵, $\{F\} = \sum_{e=1}^{n_e} \{R_e\}$ 为所取整个弹性体的表面力等效载荷列阵, n_e 为所划分的单元数.解联立方程(5)(6),可求得棒在所在节点处受到水压表面力作用下产生的位移值 Δl .

稀土棒的位移 Δl 是由于受有附加应力 ΔP 所致,它与 Δl 的关系为

$$\Delta P = E \frac{\Delta l}{l}, \quad (7)$$

式中 E 为稀土棒的杨氏模量, l 为稀土棒总长.

(7)式即为在 h 米水深处,由于水的静压力所导致的稀土棒上预应力的附加(或说增加)值.也就是说,在 h 米水深处,稀土棒上所受到的总的预应

力为

$$T = T_0 + \Delta P. \quad (8)$$

3.2. 计算过程及部分结果

根据以上提供的计算方法,计算顺序为:

取半个换能器有限元模型→加约束条件→加水静压表面力→计算稀土棒所在节点处位移值 Δl →计算附加应力 ΔP →算得稀土棒受到的总预应力值.

与2.1的计算原理一样,根据方程(8)可求得的总的预应力值,结合稀土棒的工作特性曲线,即可确定与此相对应的入水深度处最佳工作偏磁场的大小.

换能器的尺寸见文献1].每根稀土棒的直径为20mm,总长为80mm.这里,列出计算的部分值,如表1所示.

表1 VII型弯张换能器入水深度与稀土棒两端总的预应力之间的关系

入水深度/m	总预应力 T/MPa
0	12
10	13.58
20	15.2
50	19.9
80	24.6
100	27.8
150	35.6
200	43.5
250	51.4
300	59.3

可看出,随入水深度的增加,棒两端总的预应力随之相应增加.

4. 结 论

1. 利用有限元方法,可以计算出弯张换能器壳体给驱动元件施加一定预应力时的装配位移值;

2. VII型弯张换能器外表面呈凹形,随着入水深度的增加,加于驱动元件上的预应力将随之增加.采用本文的方法,也可计算出这两者的变化关系.

本文的计算方法,可以推广到其他类型的弯张壳体中.

[1] He X P *et al* 2000 *Chin . Acta Acous .* **25** 521(in Chinese) 贺西平
2000 *声学学报* **25** 521]

[2] He X P *et al* 2001 *Chin . Acta Acous .* **26** 377(in Chinese) 贺西平
2001 *声学学报* **26** 377]

[3] Li Q H 2001 *Chin . Acta Acous .* **26** 295(in Chinese) 李启虎
2001 *声学学报* **26** 295]

[4] Moffett M B *et al* 1991 *J . Acoust . Soc , Am .* **89** 1448

[5] Lancaster 1992 *Transducers for Sonics and Ultrasonics* (New York : Technomic Publishing Co. INC.) p39

Assembly prestress and its variation in different water depths when applied to the active elements of a flexensional transducer^{*}

He Xi-Ping^{1,2)} Li Bin³⁾

¹⁾ Applied Acoustic Institute , Shaanxi Normal University , Xi 'an 710062 , China)

²⁾ State key Laboratory of Mechanical Structural Strength & Vibration , Xi 'an Jiaotong University , Xi 'an 710049 , China)

³⁾ College of Marine Engineering , Northwestern Polytechnic University , Xi 'an 710072 , China)

(Received 29 September 2002 ; revised manuscript received 27 March 2003)

Abstract

It is very important for underwater flexensional transducers to accurately control the prestress applied to the active element in assembling and working process , especially , for the rare-earth magnetostrictive flexensional transducer , to be investigated clearly the relationship between the working in different water depths and the compressive prestress applied to the active element , which will be conducive to employ the active element potential energy . On coordination with the author 's research project , the assembly displacement of an underwater flexensional transducer , by which is applied prestress to the active element , is calculated with the finite element method , and an elementary experiment is performed with a class VII flexensional transducer . The magnitudes of compressive prestress is variable when working in different water depths , the relationship is calculated by using finite element method(FEM).

The method used in this paper may be generalized to other kinds of flexensional transducer .

Keywords : flexensional transducer , assembly displacement , prestress , different water depth

PACC : 4300 , 9210V , 4390

^{*} Project supported by the Natural Science Foundation of Shaanxi Province , China(Grant No. 2000SL11).