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研究了 +,--./0振子在窄带随机噪声激励下的系统响应的双峰稳态概率密度问题 1用多尺度法分离了系统的快
变项，得到了系统慢变项满足的随机微分方程 1用线性化方法求出了双峰稳态概率密度的表达式 1数值模拟表明本
文提出的方法是有效的 1
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! @ 引 言

众所周知，+,--./0振子在确定性谐和激励下，在
一定的参数范围内，系统可有三个稳态响应，其中大

的和小的是稳定的，而中间的是不稳定的 1在窄带随
机噪声作用下，+,--./0振子也有类似的现象，即在一
定的参数范围内，系统响应的稳态概率密度是双峰

的 1这种现象已经引起了人们的注意，朱位秋等［!］用
数值模拟的方法研究了 +,--./0振子在窄带随机噪
声作用下系统响应的双峰稳态概率密度、跳跃和分

叉现象；黄志龙等［"］用随机平均法和路径积分法研

究了 +,--./0振子在确定性谐和与小强度随机噪声
联合作用下（确定性谐和与小强度随机噪声联合作

用模型也可看作为窄带随机噪声作用模型）系统响

应的双峰稳态概率密度现象，但没有给出双峰稳态

概率密度的解析表达式；A60/>8［$］应用摄动法求出
了 +,--./0振子在确定性谐和与小强度随机噪声联
合作用下系统响应的双峰稳态概率密度的近似表达

式 1本文则用多尺度法和线性化方法研究了 +,--./0
振子在窄带随机噪声作用下系统的响应问题，在一

定的参数范围内，系统的响应有两种可能的运动状

态，即系统响应的稳态概率密度是双峰的，本文求出

了系统响应的双峰稳态概率密度的近似表达式 1数
值模拟表明本文提出的方法是有效的 1

" @ 多尺度法

考虑如下受随机噪声激励的 +,--./0振子
!B C "!"!

·C#" ! C!$!$ D!%（ "）， （!）
式中!"!为小参数，"，#，$都是常数，%（ "）是随机
噪声项，本文采用由 A>E.0［*］提出的模型

%（ "）D #F9=（&" C#’$（ "））， （"）
式中 # G ’ 为随机激励的强度，& 为中心频率，
$（ "）是标准 A.>/>8 过程，#’$’ 为随机扰动的强
度 1由 A>E.0［*］可知当#’充分小时，%（ "）是窄带随机
噪声，本文主要用多尺度法［%］研究这种情形 1多尺度
法已广泛应用于确定系统的研究中，近些年来在随

机系统中也有一些应用 1在随机外激的情形，H6I6/
和 +6J.>=［)］，K6L->:和 M>8:6/［(］用多尺度法研究了单
自由度非线性系统受随机外激时的响应；本文作

者［&，2］则将多尺度法推广到非线性系统的随机参激

情形和二自由度非线性随机系统中 1设系统（!）具有
如下形式的解

!（ "，!）D !’（%’，%!）C!!!（%’，%!）C ⋯，
%’ D "，%! D!" 1 （$）
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本文只对首次近似解 !!（"!，""）进行讨论 #记 #! $

!%!"!，#" $!%!""，则有

&
& $ $ #! ’!#" ’ ⋯，

&(

& $( $ #(
! ’ (!#! #" ’ ⋯ # （)）

将方程（*），（)）代入方程（"）中，并比较方程两边!
同次幂的系数，可得下列微分方程组：

#(
! !! ’"( !! $ !， （+）

#(
! !" ’"( !" $ , (#! #" !! , (##! !!

,$!*
! ’ %-./（%$ ’!&&（ $））#（0）

方程（+）的解为
!!（"!，""）$ ’（""）123（4""!）’ -# - #，（5）

式中 -# - #表示前述各项的共轭，’（""）是响应的振

幅 #将（(），（5）两式代入（0）式可得
#(

! !" ’"( !"

$ , (4"! ’6 123（4""!）, (4"#’123（4""!）

,$’* 123（*4""!）, *$’(!’123（4""!）

’ %
( 123［4（%"! ’&&（""））］’ -# - #， （7）

式中 ’6，!’ 分别表示 ’ 关于 "" 的导数及共轭，

&$!&%"!#由于对于标准 84191: 过程 &（ $），有
(&（ $）$ !，(&(（ $）$ $ 故有

!&&（ $）$（!&%"!）&（!$）$&&（""）#
本文主要研究系统（"）的主共振响应即%#"

时的情形 #引入调谐参数’，% $" ’!’#令（7）式右
端中的奇异项为零可得

(4"’6 ’ (4#"’ ’ *$’(!’

, %
( 123（4’"" ’ 4&&（""））$ !# （;）

将 ’ 表示成极坐标的形式

’（""）$
"
( )（""）123［4(（""）］# （"!）

将（"!）式代入（;）式并分离实部和虚部可得

)6 $ ,#) , )
("

%/49)，

))6 $ ,’) ’ *
7$")

* , %
("

-./) , )&&6（""
{ ），

（""）
式中)$( ,’"" ,&&（ ""）#由（""）式解出 ) 和)
后，可得方程（"）的首次近似解为
! $ )（!$）-./（%$ ’)（!$）’&&（!$））’ *（!）#

* < 线性化方法

本文中我们只讨论当&较小*（ $）是窄带随机
噪声时的情形 #首先讨论当& $ ! 即受确定性谐和
激励时 =>??49@ 系统的稳态响应 #当& $ ! 时，方程
（""）变为

)6 $ ,#) , )
("

%/49)，

))6 $ ,’) ’ *
7$")

* , %
("

-./)
{ #

（"(）

对于稳态解满足 )6 $ !，)6 $ !，于是方程（"(）变为

#) $ , )
("

%/49)，

,’) ’ *
7$")

* $ %
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-./)
{ #
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由（"*）式可得系统（"）的频率响应方程为

#
( ’ ’ , *$

7"
)( )([ ](

$ %(

)"( # （")）

由（")）时可知在一定的参数范围内，系统可有三个
解 #通过稳定性分析可知其中中间的解是不稳定的，
只有大解和小解是稳定的，物理上实现那个解取决

于系统的初始值 #
在以后的数值模拟中，我们取定系统的参数为

$ $ "，# $ !#*，" $ "，! $ !#!+，% $ (#
此时系统的频率响应曲线见图 " #

图 " 系统（"）响应曲线：&$ ! $$稳定解，, , ,不稳定解，

"""数值解

下面讨论当&%! 为小参数时，随机扰动对系
统稳态响应的影响 #由于&较小，可用线性化方法
求解，令

) $ )! ’ )"，) $)! ’)"，

式中 )!，)! 为由（"*），（")）式确定的受确定性谐和
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激励时系统的稳态响应的幅值和相位角，!!，!! 为

小扰动项，将此式代入（!!）式并忽略高阶项可得线
性化方程

!"! # $"!! % #$& $ ’$
(%

!( )’
& !!，

!"! # $ #!&
% )$
(%

!( )& !! $"!! $&""{ *
（!+）

方程（!+）可写为如下的 ,-.方程形式

/!! # $"!! % #!& $ ’$
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!( )’
& ![ ]! /#!，

/!! # $#!&
% )$
(%

!( )& !! $"![ ]! /#! $&/"（#!）
{ *

（!0）
由方程（!0）可知（ !!，!!）的稳态概率密度为联

合正态分布，只需求出 !!，!! 的一、二阶矩，求可确

定它们的分布 *可以用矩方法［!&］从方程（!0）求出

一、二阶矩 *对于稳态响应有
/$!!

/#!
#
/$!!

/#!
# &，方程

（!0）两边取数学期望可得一阶稳态矩为
$!! # $!! # & * （!1）

同样由
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（!)）
从（!1），（!)）式可得系统响应幅值 ! 的一、二阶矩分
别为

$! # !& % $!! # !&，

$!2 # $（!& % !!）
2 # !2

& % $!2
! * （2&）

而 ! 的近似稳态概率密度为正态分布&（!&，$!2
!）*

3 4 双峰稳态概率密度

当由（!3）式确定的 !& 只有一个解时，对应的 !
的稳态概率密度为单峰的 *而当由（!3）式确定的 !&

有二个稳定的稳态解时，对应的 ! 的稳态概率密度
为双峰的，此时系统有两种可能的运动状态，两种运

动状态对应的稳态概率密度分别为正态分布

&（!’，$!2
!）和 &（!(，$!2

!），其中 !’ 和 !( 分别表示由

（!3）式确定的大解和小解，分别记正态分布 &（ !’，

$!2
!）和 &（ !(，$!2

!）的概率密度函数为 )’（ !）和

)(（!）*下面我们讨论怎样由 )’（ !）和 )(（ !）构造出
数值模拟中观测到的双峰稳态概率密度函数 )（!）*
一个自然的想法就是设

)（!）# *’)’（!）% *()(（!），

*’ % *( # !， （2!）
式中 *’ 和 *( 为常数，分别表示实现大的运动状态和
小的运动状态的可能性 * 对于 *’ 和 *( 的求法，

56789:［’］给出了一种算法，即令 *’ 和 *( 分别为当&
# &受确定性谐和激励时系统实现大的稳态解和小
的稳态解的概率，可用数值方法计算出 *例如，当#
# !4+时，大解和小解的吸引域见图 2，图中阴影部
分表示大解的吸引域，白色部分表示小解的吸引域，

可得 *’ # &4131，即黑色部分的面积占总面积的

1341; *

图 2 大解和小解的吸引域 ## !4+，*’ # &4131

*’ 随#的变化情况见图 ’，从图 ’ 中可见，当

#< !4’2时，*’ # !；当#= 34!0时，*’ # &；而在双稳态
解区域［!4’2，34!0］中，*’ 随#增大而减小 *
当## !43，!4)，241时，相应的由（2!）式给出的双

峰稳态概率密度与数值模拟结果的比较见图 3—0*
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图 ! !" 随!的变化情况

" 概率密度函数（!# $%"，!" # &%’$"）(———理论解，!!!数值解

) 概率密度函数（!# $%*，!" # &%)!+）(———理论解，!!!数值解

图 + 概率密度函数（!# ,%-，!" # &%,$$）(———理论解，!!!数值解

)% 结 论

在一定的参数范围内，./00123振子在窄带随机
激励下有两种可能的运动状态，系统响应的稳态概

率密度时双峰的 (用多尺度法分离了系统的快变项，
得到了系统慢变项满足的随机微分方程 (用线性化
方法求出了双峰稳态概率密度的近似表达式 (进一
步的工作可研究系统的随机分岔［$$］和随机混沌［$,］(

［$］ 45/ 6 7，8/ 9 7 :2; 6/ 7 < $**! #$%&’(" $) *$%’+ (’+

,-.&(/-$’ !"# ,’)
［,］ =/:23 4 8 :2; 45/ 6 7 ,&&& #$%&’(" $) *$%’+ (’+ ,-.&(/-$’0 $%&

,!!
［!］ 6:32>? @ A ,&&, 1$’"-’2(& 34’(5-!0 $& ,"!
［"］ 6>;13 6 A $**& */&%!/%&(" *()2/4 & $!
［)］ B:C0>5 D = $*’$ 6’/&$+%!/-$’ /$ 72&/%&.(/-$’ 82!9’-:%20（B>E

FG?H：61I>C）

［+］ J:K:2 L :2; .:M1>N = O $*’’ #$%&’(" $) *$%’+ (’+ ,-.&(/-$’ !$%

"*-
［-］ B:C0>5 D = :2; L>?5:2 L P $**& 6’/2&’(/-$’(" #$%&’(" $) 1$’"-’2(&

;2!9(’-!0 $# "*!
［’］ JG23 = 6，Q/ 6 :2; R:23 < $**’ #$%&’(" $) *$%’+ (’+ ,-.&(/-$’

$!’ "’!
［*］ JG23 = 6， Q/ 6 6:23 Q . 9>23 O :2; R:23 < ,&&,

6’/2&’(/-$’(" #$%&’(" $) 1$’S "-’2(& ;2!9(’-!0 %( $&$-
［$&］ 45/ 6 7 $**, <(’+$5 ,-.&(/-$’（T>1K123：LU1>2U> V?>NN）［朱位秋

$**, 随机振动（北京：科学出版社）］

［$$］ Q1G23 P P，O:G 4 <，81/ Q T :2; L/2 Q R ,&&& =!/( 7940 ( *-’ ( )*

$［熊峻江、高镇同、刘先斌、孙训方 ,&&& 物理学报 )* $］

［$,］ 8/G Q L，6:23 T =，P1:23 R :2; O:2 F ,&&$ >9-’ ( 7940 ( !’ $-
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