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将基于径向基函数构造的具有插值特性的近似函数和局部边界积分方程方法相结合，建立了求解势问题的径

向基函数———局部边界积分方程方法，推导了相应离散方程 *与其他边界积分方程的无网格方法相比，本文方法具
有数值实现过程简单、计算量小、精度高的优点，并可直接施加边界条件 *最后通过算例说明了该方法的有效性 *
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! > 引 言

无网格方法是一种近年来迅速发展起来的数值

方法，自问世以来在世界范围内得到了广泛重视，已

经成为计算力学领域的研究热点之一［!］*与传统的
数值计算方法不同，无网格方法采用基于点的近似

构造近似函数，从而避免了网格的初始划分和重构 *
在处理大变形、裂纹扩展及动态不连续边界等问题

时具有较为明显的优势 *目前发展的无网格方法有
无单元 @137AB28 法（ 737078?/CA77 @137AB28 07?6D=，
.E@）［"］、再生核粒子法（ A7FAD=<5289 B7A873 F1A?2537，
GHI）［&］、有限点法（C282?7 FD28? 07?6D=，EIJ）［’］、无网
格局部 I7?ADK/@137AB28 方法（07;637;; 3D513 I7?ADK/
@137AB28，JLI@）［)］、单位分解法（F1A?2?2D8 DC <82?4）［(］、
点插值法（FD28? 28?7AFD31?2D8 07?6D=，IMJ）［%］、最小二
乘配点无网格法［,］、复变量无网格方法［N］以及边界

积分方程的无网格方法等 *
边界积分方程的无网格方法是将边界积分方程

方法 与 移 动 最 小 二 乘 法（ 0DK289 371;? ;O<1A7
1FFADP201?2D8，JLQ）相结合而形成的 *在这一方面的
主要研究工作有 J<B67AR77 等人提出的边界点法
（SD<8=1A4 8D=7 07?6D=，TUJ）［!$，!!］，V?3<A2 等人提出
的局部边界积分方程方法（ 3D513 SD<8=1A4 28?79A13
7O<1?2D8 07?6D=，LTM.）［!"，!&］、-1D等人提出的杂交边

界点法（64SA2= SD<8=1A4 8D=7 07?6D=，WTUJ）［!’］以及
程玉民等提出的边界无单元法（SD<8=1A4 737078?/CA77
07?6D=，T.EJ）［!)—!%］等 *
基于边界积分方程的无网格方法摆脱了边界元

法中建立插值函数时对于单元的依赖性，但是现有

的边界点法和局部边界积分方程方法在构造形函数

时都利用了移动最小二乘法，这种方法构造的近似

函数具有光滑性好、计算精度高等优点，但同时也带

来了计算量大、边界条件处理不便等问题 *
将径向基函数（A1=213 S1;2; C<85?2D8，GTE）和多

项式基函数耦合，可以构造出具有 X73?1函数性质的
形函数 *这种形函数在一定程度上可以克服径向基
函数和多项式基函数分别单独构造形函数时所带来

的一些不足，比如插值计算精度不高，系统矩阵的奇

异性等问题 *本文详细阐述了这种耦合形函数的构
造过程，并将其应用于势问题的局部边界积分方程

方法，建立了相应的离散方程，提出了求解势问题的

基于耦合径向基函数和多项式基函数的无网格局部

边界积分方程方法，并给出了数值算例 *

" > 基于径向基函数和多项式基函数耦
合的形函数构造

设 !（!）是在平面区域!上定义的连续可微函
数，取试函数
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为函数 !（!）的逼近函数，其中!$（!）是与节点 $ 对
应的紧支径向基函数（%&’()%*+, -.((&/*01 /)12)+ 3)-2-
4.5%*2&5，6789:），($（!）是多项式基函数，%$ 和 ’$ 分

别是与紧支径向基函数和多项式基函数相对应的待

定系数，# 是点 ! 的影响域内的节点数，& 是多项式
基函数的个数

!（!）!［!"（!），!;（!），⋯，!#（!）］$，（;）

#（!）!［("（!），(;（!），⋯，(&（!）］$ < （=）

径向基函数是一类以任意点 ! 到节点 !$ 的距

离 )$ !"! > !$"为自变量的函数 <本文采用了插值
精度较好的紧支径向基函数，具体形式为［"?］

6789:"：!$（ )）!（" > )）@#（@ # =@ ) # ?; );

# A; )= # =B )C # D )D）， （C）
其中

（" > )）# !
（" > )） （B# ) # "），
B （ ) E "{ ），

（D）

) !"! > !$"F*&$， （@）

*&$是定义在节点 !$ 处的紧支径向基函数的紧支域

半径 <
（"）式中共有 # # & 个未知待定系数，可以通过
以下方程来确定：

!
#

$ ! "
%$!$（!+）#!

&

$ ! "
’$($（!+）! !（!+）

（ + ! "，;，⋯，#）， （A）

!
#

$ ! "
%$(+（!$）! B （ + ! "，;，⋯，&）< （?）

方程（A）和（?）可以写成如下矩阵形式：

% [ ]"$ !
&[ ]!

< （G）

其中

% !
’ (
($[ ]! ， （"B）

& !［!（!"），!（!;），⋯，!（!#）］
$， （""）

’ 是 # H # 的矩阵，( 是 # H & 的矩阵，并且
’$+ !!+（!$） （"# $，+ # #）， （";）

($+ ! (+（!$） （"# $ # #；"# + # &），（"=）

由于距离无方向性，所以!$（!+）!!+（!$），表明矩阵

’ 和% 是对称矩阵，若 % > "存在，根据方程（G），可
以得到

[ ]"$ ! % >" &[ ]!
< （"C）

将其代入（"）式中，可得 !（!）的近似函数

!"（!）!［!$（!）#$（!）］% >" &[ ]!
!［!$（!）#$（!）］$%&
! )（!）&， （"D）

其中$% 为矩阵 % > "的前 # 列元素组成的子矩阵，
)（!）为形函数矩阵，即

)（!）!［!$（!）#$（!）］$%
!［,"（!）,;（!）⋯,#（!）］， （"@）

形函数的导数为

)，$（!）!［!$
，$（!） #$

，$（!）］$%， （"A）

)，$+（!）!［!$
，$+（!） #$

，$+（!）］$%， （"?）
在（"A）和（"?）式中，（·），-表示对变量 .- 的偏导数 <
可以证明（"@）式给出的形函数满足 I0+*)函数

性质，即

,$（!+）!"$+ !
"，$ ! +，
B，$ % +{ ，

（"G）

如果（"）式中包含了常数基和线性基，则插值形函数
具有一阶一致性，即

!
#

$ ! "
,$（!）! " （! &#）， （;B）

!
#

$ ! "
,$（!）!$ ! ! （! &#）< （;"）

在以上的推导过程中，如果在（"）式中令多项式
基函数 ($（!）! B，则上面形成的形函数就是完全基
于径向基函数构造的形函数 <

= J 势问题的径向基函数———局部边界
积分方程方法

势问题对应的势函数是标量函数，对应的控制

方程有 K&2--&5方程或 L)(+)%0方程 <
考虑二维的 K&2--&5方程

!

;! ! (（!），在#内， （;;）
! ! !—，在$! 上， （;=）

/ !"!
"# ! /—，在$/ 上， （;C）

其中 (（!）是给定的源函数，# 是定义域，由边界$
包围而成（$ ! 0! #$/），# 是边界上的单位外法线
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矢量，!—和 "—分别是本质边界!! 和自然边界!" 上

的已知势函数和法向流量 !
根据加权残数法，可以得到方程（""）的整体边

界积分方程

"（!）!（!）#!!!"（"，!）!!（"）
!# $!

%!!!（"）!!"（"，!）
!# $! %!#!" $$#，

（"&）
其中 " 是场点，! 是源点，"（ !）是与边界几何形状
有关的系数，!"（ "，!）是势问题的基本解 !"（ !）
满足

"（!）#
’，对于内部节点，
’("，对于光滑边界角点，

$(""
{
，对于边界角点，

（")）

式中$是边界角点处的边界形成的内角 !边界积分
方程（"&）在定义域#内和边界!上的任意点均是
成立的，对积分区域没有特别要求，如果将积分区域

改为问题域#内的任意子域#%，上述边界积分方程

同样成立，即

"（!）!（!）#!%#%

!"（"，!）%!（"）
%# $!

%!%#%

!（"）%!"（"，!）
%# $! %!#%

!" $$#，

（"*）
其中%#% 是子域#% 的边界 !一般选择具有规则形
状的子域，如对于二维问题可以选择圆形、椭圆或矩

形子域 !以上积分方程表明，源点的势函数值可以通
过包含源点的任意封闭边界上以及由该封闭边界所

包围的子域内的积分得到 !
一般情况下，子域#% 边界%#% 上的势函数及

其导数都是未知的，特别是当在局部积分边界上存

在未知势函数的梯度时，给问题的求解带来了极大

的不便 !

为了消除子域边界%#% 上未知梯度函数
%!（"）
%#

的影响，可以引入伴随解（+,-./01,0 2,3451,0）的概
念，伴随解是子域#% 上边值问题#

"!6 # 7，在#% 内， （"8）

!6 # !"（&，’），在%#% 上 （"9）
的解 !
值得注意的是除源点外，基本解 !"处处是规

则的，因而上述方程的解（伴随解）在子域#% 内是

存在的，且也是规则的 !对于二维势问题，基本解为

!" # % ’
""

30 (， （:7）

则在半径为 () 的圆形子域上，对应于方程（"8），
（"9）的伴随解是

!6 # % ’
""

30 ()， （:’）

取修正的基本解 !6"为基本解 !"与伴随解 !6之差，

!6 " # !" % !6 # ’
""

30
()
( ， （:"）

其中 ( # " % ! 表示域内源点 ! 和任意点 " 之间的
距离，() 是局部子域的圆半径 !
将修正的基本解 !6 " # !" % !6作为检验函数

（5;25 <40+51,0）代入方程（"*），利用散度定理就可以
得到对应势问题的局部边界积分方程 !对于完全处
于问题所在域内的子域，其形式为

!)（’）# %!%#%

!（"）%!6 "（"，!）
%# $!

%!#%

!6 "（"，!）$（"）$#， （::）

可以看出，（::）式中消除了势函数梯度%!
%#对边界积

分方程的影响 !然而，对于边界与整体问题域边界相
交的子域，对应的局部边界积分方程为

")（!）!)（!）# %!%#%

!（"）%!6 "（"，!）
%# $!

=!!%

%!（"）
%# !6 "（"，!）$!

%!#%

!6 "（"，!）$（"）$# ! （:>）

（::）和（:>）式就是分别对应于当源点在域内和
整体边界上时的局部边界积分方程 !不论子域的形
状、大小如何，以上两式总是成立的 !子域#% 为中

心在源点、半径为 () 的圆在整体域内# 的部分，积
分边界是由在整体域内的局部边界 *% 和整体边界

上的部分线段!% 所组成，即%#% # *%#!%，如图 ’
所示 !
由前面的推导可知，只要源点的局部边界%#%

在整体边界以内，而不与整体边界!相交，在引入
伴随解后，对应的局部边界积分方程中将不包含势

函数的梯度项%!
%#；如果局部边界%#% 与整体边界!

相交，局部边界%#% 就包含了整体边界!的一部分

!%，这时势函数的梯度项
%!
%#也将包含在局部边界积
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图 ! 节点的局部子域、子域边界和节点的紧支域

分方程中 "在最后的代数方程中，只将势函数 !（ !）
作为独立变量 "一般情况下局部边界半径的大小不
会影响数值结果，所以通常选取局部子域的半径 "#
为较小，以使任意内部节点的局部边界不与整体边

界!相交，这样可以避免一些复杂的积分运算 "
在势问题中，势函数 !（ !）是个标量，根据前面

基于径向基函数和多项式基函数构造的近似函数，

对应的势函数 !（!）可以近似表示为

!（!）# !
$

% # !
$%（!）!%， （$%）

其中 $ 是问题域" 中的节点总数，$%（ !）是形函
数，!% 表示节点的势函数 "
将近似函数（$%）式代入对应于节点 # 的局部边

界积分方程（$&），可得

##!# # &# ’!
$

% # !
’"#% !% （ # # !，(，⋯，$），（$)）

其中

’"#% # *#!()

$%（!）$!+ "（!，"#）

$* ,!

’#!(!

!+ "（!，"#）
$$%（!）
$* ,!

*#+(
$%（!）$!+ "（!，"#）

$* ,!， （$-）

&# # *#!(!

!+ !—$!+ "（!，"#）

$* ,!

’#!()

!+ "（!，"#）)
—（!）,!

*#"(

!+ "（!，"#）,（!）," " （$.）

因为近似函数满足 /0123函数的性质，所以方程
（$)）可以进一步改写为

&# # !
$

% # !
（* ’"#% ’##%#%）!% （ # # !，(，⋯，$），

（$4）
一共可以列出 $ 个这样的代数方程，可统一写成矩
阵形式

#$ # %， （&5）
其中

’#% # * ’"#% ’##%#%， （&!）
求解方程组（&5），就可以得到域内及其边界上所有
节点的势函数 "
以上就是基于径向基函数和多项式基函数构造

近似函数建立的局部边界积分方程的无网格方法 "
这是一种完全无网格方法，其优点是无论形函数构

造，还是数值积分都不需要单元和网格，积分是在规

则形状的子域（圆域）上完成的 "由于形函数具有插
值特性，边界条件可以像有限元法一样直接施加，克

服了基于移动最小二乘法的无网格方法中通过虚拟

节点变量进一步求解问题真实解的繁琐过程，从而

提高了计算效率和精度 "但是，在数值实施过程中有
以下两点需要注意：

（!）在数值积分的过程中，对于内部节点而言，

$"( # +(，对应子域的边界积分没有奇异性，积分可

用普通的 63788积分计算；但是当节点位于整体边
界上时，积分边界$"( # +($!(，如图 !所示，局部
边界$"( 同时包含了部分整体边界!(，其中整体域

内局部边界 +( 上的积分是普通积分，可用普通的

63788积分计算；而部分整体边界!( 上的积分涉及

19 " 的奇异性 "对于积分核函数中包含 19 " 的积分可
采用对数 63788积分，即

- ##
!

5
19（!: .）&（.）,. # !

/

# # !
&（.#）0#，（&(）

其中 / 是对数 63788 积分点 .# 的个数，0# 是对应

的权系数 "
（(）传统的边界元方法中，角点处理是非常棘
手的问题，但是在局部边界积分方程的无网格方法

中，系统方程中的基本未知量是节点的位势函数，不

包含未知梯度函数，所以角点的处理不需要特别方

案，较为容易 "

& ; 数值算例

下面利用本文建立的基于耦合径向基函数和多

项式基函数的局部边界积分方程方法，分别对
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!"#$"%&方程和 ’()**(+方程进行数值求解 ,

!"#" 考虑矩形域上的 $%&’%()方程

!

-! . !
- !
!"- /!

- !
!#- . 0 " !［0，1］，# !［0，20］，

边界条件为

!（"，0）. 0，!（0，#）. 0，

!（"，20）. 200*)+（"" 320），!!（1，#）
!$ . 0，

解析解为

!（"，#）. 200*)+（"" 320）*)+4（"# 320）
*)+4（"）

,

图 - 节点分布

图 5 " . -61处解析解与本文数值解的比较

如图 -所示，在矩形区域"内均匀布置了 7 8
29个节点 ,（2）式中的径向基函数取为（:）式中的紧
支径向基函数（;<=>?2），多项式基函数取为线性基
函数 ,图 5给出了 " . -61处势函数的解析解和本文

方法的数值解 ,图 5中十字星表示耦合径向基函数
和多项式基函数的计算结果，空心圆点表示紧支径

向基函数（忽略多项式基函数）的计算结果，可以看

出本文方法好于紧支径向基函数的计算结果，在边

界处更为明显，这主要是因为单独由紧支径向基函

数构造的形函数不满足一阶一致性条件，也就是说

用紧支径向基函数甚至不能重构常函数［2@］；而将径

向基函数和多项式耦合构造的形函数满足一阶一致

性条件，所以本文方法数值结果的精度高于紧支径

向基函数（;<=>?2）的结果 ,

!"*" 考虑矩形域上的 +,-..,/方程

!

-!（"，#）. A -（" / # A "- A #-）

0" " " 2，0" # " 2，
!（"，#）. 0 在矩形域的边界上，

解析解为

!（"，#）.（" A "-）（# A #-）,
如图 :所示，在求解域内均匀布置了 25 8 25个

节点 ,图 1给出了 # . 061处的解析解和本文数值解
的对比图 ,与上题类似，用十字星表示的本文数值解
结果好于空心圆点表示的紧支径向基函数（忽略多

项式基函数）的计算结果，在边界处更为明显，原因

同上 ,

图 : 矩形域内的节点分布

16 结 论

将径向基函数和多项式基函数耦合，构造了满

足 B&$C"函数性质的形函数，然后将其引入求解势问
题的局部边界积分方程，建立了相应的离散方程，形

成了一种完全无网格的边界积分方程方法 ,在数值
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图 ! ! " #$!处的数值解与解析解的比较

实施过程中，直接采用节点变量的真实解作为基本

未知量，是局部边界积分方程无网格方法的直接解

法 %该方法具有数值实现过程简单、计算量小、精度

高、可以直接施加边界条件等显著优点 %由于将紧支

径向基函数和多项式基函数耦合构造的形函数满足

一阶一致性条件，而单独由紧支径向基函数构造的

形函数不满足这一特性，故前者的计算结果好于后

者的结果 %

数值算例表明，本文建立的基于径向基函数的

局部边界积分方程方法是有效的 %

［&］ ’()*+,-./0 1，23045678 9，:3564 ;64<() =，>)(?<45 @，23*,) A

&BBC "#$% % &’() % *+ ,%%- % &’.) % /+0 1+2*+ % !"# D
［E］ ’()*+,-./0 1，F7 9 9，G7 F &BBH 3+(’4 % 5 % 67$ % &’() % *+

1+2*+ % "$ EEB
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［S］ P.645 X，F<7 X Y，J045 2 P E##& 3+(’4 % 5 % 67$ % &’() % *+

1+2*+ % )! &#SB
［B］ R.(45 9 @，F< = Y E##! ,.(/ 9)!: % ;*+ % )’ HHCD（ <4 R.<4(,(）
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1+2*+ % ’( UBU
［&&］ 20+.473 [ J，@7/.(3Z(( J，@7/.(3Z(( 9 X &BBB 3+(’4 % 5 % #<

;#-*0: /+0 ;(47.(74’: "* &&EB
［&E］ P.7 1 F，P.645 = ;，K+)73< J6+*6 T &BBS "#$%7( % &’.) % &! EED
［&D］ K+)73< J6+*6 T，P.7 1 F E### 3+(’4 % 5 % <#4 67$ % &’() % *+

1+2*+ % ’$ !DU
［&H］ P.645 = @，960 P Y，F< Y E##E 3+(’4 % 5 % <#4 67$ % &’() % *+
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