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The complexity measure analysis of conductance fluctuation
signals of gas-liquid two-phase flow and
its flow pattern characterization ™
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Abstract

To discuss the relation between complexity measures extracted from time series and flow pattern transition in gas-liquid two-
phase flow this paper analyzes the recognition capability of three complexity measures including Lempel-Ziv complexity
spectral entropy and approximate entropy to different signals such as periodic signal ~stochastic signal mixed stochastic signal
and chaotic signal and then the paper discusses the influence of the length of time series to the algorithms of the three complexity
measures. Based on the above studies we extracted the three complexity measures from eighty conductance fluctuating signals of
gas-liquid two phase flow in vertical upward pipe. The results indicate that the three complexity measures are sensitive to the flow
pattern transition in gas-liquid two-phase flow. By analyzing the rules of three complexity measures with the changes of gas-liquid
two-phase flow parameters we can get the dynamics structure inversion characters of gas-liquid two-phase flow and they provide

an efficient supplementary diagnostic tool to reveal the flow pattern transition mechanism of gas-liquid two-phase flow.

Keywords gas-liquid two-phase flow Lempel-Ziv complexity power spectrum entropy approximate entropy
PACC 0545 4752

* Project supported by the National Natural Science Foundation of China Grant Nos.60374041 50674070 .

1 E-mail ndjin@tju.edu. cn



