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Abstract

The geometrical structure frequency and electronic properties of the NiMg, n =1—12 clusters have been studied with
the generalized gradient approximation GGA based on the density functional theory DFT with the consideration of spin
multiplicity. The results indicate that when n is 1 or 2 the spin multiplicity of the ground state structures of the clusters is
triplet while it is singlet from n = 3. The ground state structures of the host clusters are changed obviously due to the
encapsulation of Ni atom for n <8 the growth patterns of the ground state structures of the NiMg, clusters are dominated by the
trigonal bipyramidal as well as the octahedron structures. The evolution behaviors of the ground state structures based on the
trigonal prism of the host clusters are partly modified from n=9. The Ni atom completely falls into the center of the host clusters
as n=6. The doping of Ni atoms increases the average binding energy but reduces the energy gap of the host clusters. n =4
6 and 10 are the magic numbers. The 3d and 4p orbitals of the Ni atom for different sized clusters play distinct roles in the s-p-
d orbital hybridization. The NiMg cluster with higher symmetry O, not only possesses improved stability but also has the
smallest energy gap just about 0.25 eV of all of the NiMg, clusters.
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