
光学!射频双光子耦合作用下的电磁诱导
透明和电磁诱导吸收!

张连水 李晓莉! 王 健 杨丽君 冯晓敏 李晓苇 傅广生
（河北大学物理科学与技术学院，保定 "#$""%）

（%""#年 $"月 $&日收到；%""’年 %月 %%日收到修改稿）

在通常的!型三能级系统中，光学耦合场和探测场分别激发两个不同的光学跃迁，探测吸收谱呈现电磁诱导
透明（()*）特性 +若将此系统拓展为光学,射频双光子耦合场和探测场共同作用下的准!型四能级系统，探测吸收
谱呈现电磁诱导吸收（()-）和 ()*两种特性 +通过求解系统的密度矩阵方程，分析了 ()-和 ()*的产生条件，并给出
了相应的缀饰态解释 +研究结果表明，在准!型四能级系统中，光学耦合场对 ()-和 ()*的形成起决定作用，共振
时出现 ()-，非共振时出现 ()*，而且 ()-和 ()*的线宽随着光学耦合场拉比频率的增大而增加 +
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$ < 引 言

原子相干和量子干涉效应是光与物质相互作用

中表现出来的奇特的非线性效应 +由原子相干和量
子干涉效应产生的电磁诱导透明（()*）、电磁诱导吸
收（()-）、无反转激光、无吸收折射率增强以及快慢
光等研究课题一直是激光物理和量子光学领域的研

究热点 +其中的 ()*和 ()-是一对性质相对立的相
干现象，它们分别基于原子相干对吸收的相消干涉

和相长干涉，使介质的吸收和色散特性发生完全不

同的变化 +目前，国内外关于 ()* 的研究已趋于成
熟，对影响 ()*线宽的诸多因素［$—0］以及外加驱动
场对 ()* 的影响规律［.—$=］都进行了比较深入的研
究，但关于 ()-的研究尚处于起步阶段，国内外学者
在此方向的研究成果还为数不多［$#—%%］+
典型的 ()*现象通常出现在!型三能级系统

中，光学耦合场和探测场分别激发两个不同的光学

跃迁，系统的两低能级同属于基态精细结构能级，它

们之间的相干失相速率很小，因此 ()*具有极窄的
光谱线宽，比光学跃迁的自然线宽小若干数量级 +许
多学者对!型三能级系统和由此衍生的准!型多
能级系统中的 ()*及其相关特性进行了实验和理论

研究［$"—$=］+例如，>?3等［$%—$.］在!型金刚石掺杂系
统的基态精细结构能级中外加射频控制场，使能级

产生动态 @A2BC 劈裂，从而得到了双窗口及多窗口
()*；本课题组曾对此进行了理论研究［$/，$=］，得到了
相同的变化规律 +本文采用的准!型四能级系统也
是由!型三能级系统拓展而成的，系统包括两个基
态精细结构能级和两个激发态精细结构能级，除光

学耦合场和探测场外，还附加了一个射频场作用于

两个激发态精细结构能级之间 +因此，原!型三能
级系统中的光学耦合场被换作光学,射频双光子耦
合场，并产生了新的非线性效应 +结果表明，通过改
变双光子耦合场的参数，系统的探测吸收谱呈现

()-和 ()*两种完全相反的特性 +其中光学耦合场
对 ()-和 ()*的形成起决定作用，其与原子能级共
振时出现 ()-，其频率失谐量为一定数值时出现
()*，而且 ()-和 ()*的线宽随着光学耦合场拉比频
率的增大而增加 +

% < 系统的密度矩阵方程

光学,射频双光子耦合场和探测场共同作用下
的准!型四能级系统模型如图 $（2）所示 +图 $中的
D $〉和 D %〉能级属基态精细结构能级，D 0〉和 D .〉能级
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属激发态精细结构能级 ! 频率为 !" 的光学耦

合场激励 # $〉! # %〉跃迁，频率为!&’的射频场激励

# %〉! # (〉跃迁，可视为级联型的光学)射频双光子耦

合场，而频率为!* 的探测场通过扫描 # +〉! # (〉跃迁
获得探测吸收谱 !三场的拉比频率分别为""，"&’

和"* !

图 + 光学)射频双光子耦合场和探测场共同作用下的准!型四能级系统 （,）裸态能级图，（-）共振光学耦合场（#%$ . /）

作用下的缀饰态能级图，（"）非共振光学耦合场（#%$ . +）作用下的缀饰态能级图

该准!型四能级系统的密度矩阵方程可表
示为

!$++ . 0%*（$(+ 1$+(）2 &$（$(( 2$%%）

2’（$$$ 1$++）， （+,）

!$$$ . 0%"（$%$ 1$$%）2 &$（$(( 2$%%）

2’（$++ 1$$$）， （+-）
!$%% . 0%&’（$(% 1$%(）1 0%"（$%$ 1$$%）

1&$%%， （+"）
!$(( . 1 0%&’（$(% 1$%(）1 0%*（$(+ 1$+(）

1&$((， （+3）
!$(% . "(%$(% 2 0%&’（$%% 1$((）2 0%*$+%

1 0%"$($， （+4）
!$($ . "($$($ 2 0%&’$%$ 2 0%*$+$

1 0%"$(%， （+’）
!$(+ . "(+$(+ 2 0%&’$%+ 2 0%*（$++ 1$((），（+5）
!$%$ . "%$$%$ 2 0%"（$$$ 1$%%）

2 0%&’$($， （+6）
!$%+ . "%+$%+ 2 0%"$$+ 2 0%&’$(+

1 0%*$%(， （+0）
!$$+ . "$+$$+ 2 0%"$%+ 1 0%*$$( ! （+7）

这里

%" ."" 8$，

%&’ ."&’ 8$，

%* ."* 8$；

"#$ . 0##$ 1&#$

为复失谐量，其中##$分别为

#%$ . !" 1!%$，

#(% . !&’ 1!(%，

#(+ . !* 1!(+，

&#$是能级 # #〉和 # $〉之间的相干失相速率；激发态能

级 # %〉和 # (〉自发衰减到基态能级 # +〉和 # $〉的粒子数
衰减速率均为&，而 # +〉与 # $〉之间的粒子数弛豫速
率均为’ !为简单起见，设&. +，其他参量均以其为
单位取相对值 !
密度矩阵方程中的非对角密度矩阵元$(+的虚

部正比于探测场的吸收系数，实部则反映探测场

的色散特性 !本工作重在研究光学)射频双光子耦
合场对系统的影响，故将探测场视为弱场 !通过对
探测场进行微扰处理，求解$(+的一级微扰解，得

到9:（$
（+）
(+ ）随探测场失谐量#(+ .!* 1!(+的变化曲

线，即探测吸收谱的变化规律 ! $(+的一级微扰解

表达式为

$
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其中!
（!）
"" ，!
（!）
## ，!
（!）
$# 和!

（!）
%# 为零级解 &

% ’ 结果及讨论

!"#" 探测吸收曲线随光学耦合场频率失谐量的
变化

在!型三能级系统中，当光学耦合场与探测场
满足双共振条件时，探测吸收曲线的中心频率处出

现线宽极窄的 ()*，而调谐光学耦合场的频率失谐
量可改变 ()*的频率位置 &本文的准!型四能级系
统由!型三能级系统拓展而成，其采用共振射频场
（"+, - $），通过调谐光学耦合场（". - !’"）的频率失
谐量#%$，研究探测吸收曲线的变化规律 &
图 $ 给出了准!型四能级系统在光学耦合场

的频率失谐量取#%$ - !，"时的探测吸收曲线 &图 $
曲线 ! 对应于光学耦合场与 / $〉! / %〉跃迁共振的
情况，也可认为光学0射频双光子耦合场与 / $〉! / #〉
跃迁共振，此时探测吸收曲线的中心频率处出现的

不是 ()*，而是线宽极窄的强吸收峰，即 ()1&同时由
于射频场的动态 234+5劈裂效应，在探测场的频率失
谐量为##" - 6 " 处分别出现了一个线宽接近于自
然线宽的强吸收峰，它们关于中心频率对称分布，被

称为 17389+0*:;<9=双峰 &图 $ 曲线 " 对应于光学耦
合场与 / $〉! / %〉跃迁非共振的情况 &因为共振射频
场的拉比频率保持不变，故由其产生的 17389+0
*:;<9=双峰的频率位置也保持不变 &探测吸收曲线
上不再出现 ()1，而是在探测场的频率失谐量为##"

- "处出现了 ()*，并叠加在 17389+0*:;<9=双峰中的
一支上 &由图 $可以看出，在准!型四能级系统中，
光学耦合场对 ()1和 ()*的形成起决定作用，共振
光学耦合场使系统在探测场的中心频率处出现

()1，而非共振光学耦合场使系统在与光学耦合场的
频率失谐量相对应的探测频率位置出现 ()*&
为了更全面地描述准!型四能级系统中 ()1

和 ()*之间的转化过程，我们在图 % 中给出了随光
学耦合场频率失谐量变化（#%$ - > $—$）的系列探
测吸收曲线 &从图 %可以看出，由共振射频场的动态
234+5劈裂效应而产生的 17389+0*:;<9= 双峰的频率
位置始终保持不变，固定在探测场的频率失谐量为

##" - 6 "处 &而光学耦合场的频率失谐使原来位于
探测场中心频率处的 ()1出现了频率偏移现象，其
频移量等于光学耦合场的频率失谐量#%$ &随着光学

图 $ 准!型四能级系统在射频场（"+, - $）共振且光学耦合场

（". - !’"）的频率失谐量分别取#%$ - !，"时的探测吸收曲线

曲线 ! 为#%$ - !，曲线 "为#%$ - "

耦合场的频率失谐量逐渐增加，()1沿着远离中心
频率的方向逐渐频移，其吸收特性也逐渐发生变化 &
当 ()1频移至 17389+0*:;<9=双峰所对应的频率位置
时，其吸收特性完全消失，系统出现 ()*&当光学耦
合场的频率失谐量继续增加时，()*沿着远离中心
频率的方向继续频移，同时其吸收特性也逐渐发生

变化 &

图 % 准!型四能级系统在射频场（"+, - $）共振且随光学

耦合场（". - !’"）频率失谐量变化（#%$ - > $—$）的系列探

测吸收曲线

!"$" 缀饰态解释

以上的分析表明，准!型四能级系统中 ()1向
()*的转化经过了一系列的中间变化过程，而且射
频场和光学耦合场在其中各自起到了不同的作用 &
此系统中探测吸收特性的形成机制可用缀饰态理论

得到很好解释［$%］&在本研究中，相对于 / %〉! / #〉能
级之间的跃迁线宽而言，射频场可视为强场，由其产
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生的动态 !"#$%劈裂效应使能级 & ’〉劈裂为两条缀饰
态能级 & (〉和 & )〉，如图 *（+）和（,）所示 -由于射频
场与 & .〉! & ’〉能级发生共振相互作用，& (〉和 & )〉
对称地分布在原子能级 & ’〉的两侧，其能级间距等于
射频场的拉比频率!$/ -本文采用!$/ 0 1，故缀饰态
能级 & (〉与 & )〉之间的频率间距等于 1，使探测吸收
曲线上出现了对称的 23"45$6789:5; 双峰，双峰的两支
分别位于探测场的频率失谐量为"’* 0 < *处 -
当光学耦合场与 & 1〉! & .〉能级共振时，相当于

光学6射频双光子耦合场与 & 1〉! & ’〉能级共振，形
成跃迁路径 *，如图 *（+）所示 -而当光学耦合场与
& 1〉! & .〉能级产生失谐且频率失谐量".1 0 *时，相
当于光学6射频双光子耦合场与 & 1〉! & (〉能级共
振，形成跃迁路径 1，如图 *（,）所示 -在跃迁路径 *
中，双光子耦合场将原子从能级 & 1〉激发到虚能级
& ’〉上 -这其中包含着两种形式的跃迁，即原子从能
级 & 1〉跃迁到能级 & (〉上和从能级 & 1〉跃迁到能级
& )〉上，并构成两个新的!型三能级系统 -通过分
析可知，如果这两个!型三能级系统分别单独作
用，将各自产生一个 =>7，但在本系统中这两个!型
三能级系统相对于双光子耦合场具有大小相同的调

谐频率而符号相反，它们之间形成量子相干，使介质

的吸收特性发生改变，在探测场的中心频率处感应

形成 =>2-而跃迁路径 1是一条单纯的跃迁路径，双
光子耦合场将原子直接从能级 & 1〉激发到能级 & (〉
上并构成一个!型三能级系统，在探测场的频率失
谐量为"’* 0 *处形成 =>7-如果光学耦合场与原子
能级产生失谐但频率失谐量".1" < *时，相当于跃
迁路径 *和跃迁路径 1同时起作用，探测吸收特性
介于 =>2和 =>7之间 -

!"!" #$%和#$&的线宽随光学耦合场拉比频率的变化

本系统中出现的 =>2和 =>7的最显著特性是它
们都具有极窄的光谱线宽 -它们的线宽由基态精细
结构能级间的相干失相速率# 决定，# 越小，=>2
和 =>7的线宽也越窄 -这种特性使得 =>2和 =>7在
高分辨激光光谱［1’］、激光稳频、量子计算［1?］以及与

其色散特性相关的“慢”光［1@—1A］和光存储［1B—.*］等方

面均具有很好的应用前景 -通过以往的研究，我们知
道耦合场的拉比频率也会影响 =>2和 =>7的线宽 -
在本系统中采用的是光学6射频双光子耦合场激发
原子跃迁，经过以上分析可知，射频场的作用是使原

子能级 & ’〉发生劈裂，产生 23"45$6789:5; 双峰，为

=>2和 =>7的出现创造条件，而光学耦合场则直接
导致了 =>2和 =>7的出现，因此在本文中只分析光
学耦合场对 =>2和 =>7线宽的影响规律 -
图 ’和图 ?分别给出了共振射频场（!$/ 0 1）作

用下 =>2和 =>7的线宽随光学耦合场拉比频率（!,

0 C—*）的变化规律 -图 ’为光学耦合场共振时的情
况，此时系统在探测场中心频率处出现 =>2-由图 ’
可知，随着光学耦合场拉比频率的增大，=>2的线宽
逐渐增加 -图 ?为光学耦合场取频率失谐量".1 0 *
时的情况，系统在探测场的频率失谐量为"’* 0 *处
出现 =>7，此 =>7叠加在 23"45$6789:5;双峰中的一支
上 -从图 ?中可以得到与图 ’相似的结果，即随着光
学耦合场拉比频率的增大，=>7的线宽也逐渐增加 -
总之，在本系统中光学耦合场的拉比频率与 =>2和
=>7的线宽成正比，如果想更好地利用 =>2和 =>7的
窄线宽特性，应尽量避免采用强光学耦合场 -

图 ’ 共振射频场（!$/ 0 1）作用下 =>2的线宽随光学耦合场（".1

0 C）拉比频率（!, 0 C—*）的变化

图 ? 共振射频场（!$/ 0 1）作用下 =>7的线宽随光学耦合场（".1

0 *）拉比频率（!, 0 C—*）的变化
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!" 结 论

本文对光学#射频双光子耦合作用下的准!型
四能级系统的探测吸收特性进行了理论研究，分析

了 $%&和 $%’的产生条件以及相互转化过程，并利
用缀饰态理论给出了合理解释，随后进一步研究了

光学耦合场的拉比频率对 $%&和 $%’线宽的影响规

律 (研究结果表明，本系统虽然是由!型三能级系
统拓展而成，但其探测吸收特性较!型三能级系统
发生了很大变化 (本系统中出现了 $%&和 $%’两种
截然相反的吸收特性，其中光学耦合场对它们的形

成起决定作用，同时光学耦合场的拉比频率也直接

影响了它们的线宽 (该研究结果对 $%&和 $%’在高
分辨激光光谱、量子计算以及光信息存储等领域的

应用研究具有重要意义 (
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