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Abstract

The generalized gradient approximation based on density functional theory is used to analyze the structural and electronic
properties of the unconventional exohedral fullerene Cg, Si. It is found that among four possible stable isomers the structure with
the single Si atom situated at the vertex of the directly fused pentagons i.e. CgSi-1 is the most stable which agrees well
with the stable position of Si outside the Cyg cage proposed by Ge et al. By analyzing the energy levels orbital wave functions
and density of states of both Cg and Cg Si-1  Si atom is found to have greater contribution to the lowest unoccupied molecular
orbital but contribute less to the highest occupied molecular orbital. In addition the effect of Si on the total density of states of
Ce; is very small. It is found from the vertical ionization potential and the vertical affinity that the ability for both detaching and

obtaining electrons is decreased after the exohedral absorbing Si atom.
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