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基于弹性杆的 ()*+,,-..模型讨论受拉扭弹性细杆的超螺旋形态 /导出细长螺旋杆的等效抗弯和抗扭刚度 /分
析受拉扭弹性细杆的稳定性和分岔，且利用等效刚度概念将弹性杆的稳定性条件应用于对细长螺旋杆稳定性的判

断 /在扭矩不变条件下增加拉力至极限值时，直杆平衡状态失稳转为螺旋杆状态 /继续增加拉力，直螺旋杆平衡状
态失稳卷绕为超螺旋杆 /从而对 0,-123-456,712489实验中受拉扭弹性细杆形成超螺旋形态的多次卷绕现象作出
定性的理论解释 /
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!国家自然科学基金（批准号：!$:=#$;=）资助的课题 /

" >?17)@：@)A9B,+C -4@)48/ 3,/ +4

! D 引 言

利用弹性细杆作为 EFG等生物大分子的力学
模型以计算其几何形态的研究，已形成力学与分子

生物学的交叉学科［!，#］/染色体中的 EFG以超螺旋
形式存在 / # 41直径的 EFG卷绕成 !! 41直径的螺
旋，再卷绕成 %$ 41 直径的超螺旋进入染色体 /
0,-123-4和 6,712489等于 !’’;和 #$$#年进行了物
理模拟实验再现类似的过程［#，%］/他们将直径 % 11，
长度 !& +1的硅橡胶细杆两端固定，施加轴向拉力
和扭矩 /可观察到随着拉力的增加，受扭转直杆的中
部出现局部弯曲，逐渐形成局部回环，并发展形成螺

旋线的现象 /继续增加载荷，螺旋杆的中轴线可由直
线卷绕为螺旋线，形成二级乃至更高级超螺旋杆（见

图 !）/虽然弹性杆的简单物理实验不可能等同于复
杂的分子生物学现象，但可定性地证明螺旋杆多次

卷绕现象的存在 / ()*+,,-..动力学比拟是分析 EFG
弹性杆模型的理论基础［:，H］/ !’’$ 年 6-948 利用
()*+,,-..方程的解析积分，对受拉扭细杆的失稳过
程给出严格的理论证明［;］/ I74 J8* K8)LJ84，0*7I8*3，
0,-123-4等以 EFG为具体背景，对失稳过程作了更
深入分析［#，=，&］/本文基于弹性杆的 ()*+,,-..模型，利
用细长螺旋杆的等效刚度概念和螺旋杆的稳定性概

念分析弹性杆多次卷绕转变为超螺旋杆的力学过

程 /对上述超螺旋杆的实验现象给出定性的理论
解释 /

# D 螺旋杆的等效抗扭刚度

设圆截面弹性细杆满足 ()*+,,-..理论的规定条
件：截面刚性且与中心线正交、均匀各向同性、线弹

性、无分布力 /设杆的两端以球铰固定，固定处不影
响截面的转动 /以端点 !$ 为原点 "，建立固定参考
坐标系（"?#$%），且沿中心线建立弧坐标 &，以确定
中心线上任意点 ! 的位置 /将（"?#$%）平移至 !
点，令（!?#$%）绕 % 轴转过! 角后的位置为
!?’$ ($ )( )$ ，绕 ’$轴转过"角后的位置为 !?( )’() ，
绕 ) 轴 转 过# 角 后 的 位 置 与 截 面 坐 标 系
!?’&(&)( )& 重合，) 和 )& 轴均沿杆中心线的切线 /
!?( )’() 为圆截面的主轴坐标系，但不参与截面绕
切线轴的扭转 /!，"，$为确定截面姿态的欧拉角
（见图 #）/设弹性杆在松弛状态下为螺旋杆，其几何
形态以欧拉角描述为

" M"$，!N M!N$，#N M#N$， （!）
其中!N$ M 3)4"$ 5*$，*$ 为螺旋线半径，% M &5# O

"$ 为螺旋线倾角 /
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图 ! "#$%&’$()*#+%&(,-实验（引自文献［.］）

在螺旋细杆两端施加绕 ! 轴的扭矩!! 和

/ !!，!! 在 "0( )#$% 中的投影式为

!! 1 &!"2 1 &! ’3(!! 4 5$’!( )" ， （.）

其中 #2，$2，%2 和 &，!，" 分别为（"0’(!）和
"0( )#$% 的基矢量 6螺旋杆在扭矩作用下绕 ! 轴作
整体扭转（图 7）6设整体扭转不影响截面的相对扭
率"82，但引起转角#和常值倾角!的变化 6#对 !
轴的变化率#8! 1 9#)9! 可利用 9! )9 ) 1 5$’!2 变

换为对弧坐标 ) 的变化率#8：

#8 1 9#)9 ) 1#8! 5$’!， （7）
则整体扭转使杆产生的弯扭度#为

# 1#8%
2 4"82 " 1#8 ’3(!! 4$%"， （:）

其中$% 为整体扭转后杆的扭率，即

$% 1#8 5$’! 4"82 6 （;）

设 * 1 +,，- 1 .,2 为杆的抗弯和抗扭刚度，+，.
分别为杆的杨氏模量和剪切模量，,，,2 分别为截面
的惯性矩和极惯性矩 6#的存在引起 " 点处杆的弯
矩和扭矩，其合力矩与扭矩!! 平衡

!! 1 * #8 ’3(! /#82 ’3(!( )2 ! 4 - $% /$%( )2 "，
（<）

其中$%2 1 #82 5$’!2 4"82 6 令上式各项与（.）式相

图 . 确定截面姿态的欧拉角

等，将! 1!2 4!!代入，仅保留!!的一次项，解出

#8 /#82 1 &!
’3(.!2

* 4
5$’.!2( )- 6 （=）

将 &! 与 #8! /#8!( )2 之商定义为与螺旋杆等效的

直杆的抗扭刚度，称为螺旋杆的等效抗扭刚度，记作

!- 1 &! ) #8 ! /#8 !( )2 6 得到
!- 1 -5$’!2 ! 4 % /( )! ’3(.![ ]2

/!， （>）
其中% 1 - )* 为弹性杆的抗扭和抗弯刚度之比 6图
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!为螺旋杆的等效抗扭刚度!! 随!" 的变化曲线 #

图 $ 受扭和受弯的细长螺旋杆

图 ! 等效抗扭刚度!! 随!" 的变化曲线

$% 螺旋杆的等效抗弯刚度

在螺旋细杆两端施加绕 " 轴的力矩!" 和

& !"，!" 在 #’( )$%& 中的投影式为

"" ( ’"!"

( ’" )*+#" & +,-# )*+!# & +,-!( )[ ]$ ，（.）
在此力矩作用下螺旋杆绕 " 轴作整体弯曲（图 $）#
弯曲变形引起的绕 " 轴的转角记作$，其相对 ( 轴
的变化率$/( ( 0$10( 可变换为对弧坐标的变化
率$/，即

$/ ( 0$10 ) ($/( )*+!# （2"）
弯曲变形使倾角!不再为常值，螺旋杆变形后的弯
扭度"为

" (!/ " 3$/!" 3#/%
" ( %$" 3%%# 3%&$，

%$ (!/ 3$/ )*+#，

%% (#/ +,-! &$/ )*+!+,-#，

%& (#/ )*+! 3$/ +,-!+,-#， （22）
在松弛状态下$/ 和!/ 均为零值 #利用上式计算 #
点处杆的内力矩&" ，令其与（.）式各项相等，得到

* !/ 3$/ )*+( )# ( ’" )*+#， （245）

* #/ +,-! &#/" +,-!( )" &$/ )*+!+,-[ ]#
( & ’" )*+!+,-#， （246）

! #/ )*+! &#/" )*+!( )" 3$/ +,-!+,-[ ]#
( ’" +,-!+,-## （24)）

将! ( !" 3!!代入（245）式，计算!!/ 对#的积
分，忽略$/ 在积分中的微小改变，得到

!! ( 2
#/

’"

* &$( )/ +,-#， （2$）

则 ’" 1* 或$/ 与#/ 之比为!!的同阶小量 #仅保留
其一次项，从（246），（24)）式解出

$/ (#/ !!+,-#
3
’"

*#/
2 3 *

! &( )2 +,-4![ ]{ }" #

（2!）
将（2$）式代入后导出

$/ (
’"

* 2 3 2
4

*
! &( )2 +,-4![ ]" # （27）

将 &" 与&/( 之商定义为与螺旋杆等效的直杆抗弯
刚度，即螺旋杆的等效抗弯刚度，记作!* ( ’" 1$/( #
得到

!* ( *)*+!" 2 3 2 &( )’
4’

+,-4![ ]"

&2

# （28）

等效抗扭刚度!* 为!" 的减函数，变化曲线如图 7
所示 #

图 7 等效抗弯刚度!* 随!" 的变化曲线

!% 受拉扭细长弹性杆的平衡形态

讨论受轴向力 ’" 和扭矩 &" 作用的带原始扭

率%"
&的圆截面杆，两端的球铰约束不影响杆端的弯

曲和扭转变形 #在 9,:);;*<<理论框架内，其平衡方程
可利用截面的欧拉角表示为［$］

* != & #( )/ 4 )*+!+,-[ ]!
3 ! %& &%"( )& #/ +,-! & +" +,-! ( "，（2>5）
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! !! "#$" % &!’"’ ()"( )" * " ## *#+( )# "’ , +，
（-./）

" ## *#+( )# ’ , + 0 （-.(）
方程（-.(）存在初积分## , ##+ 0引入参数 $ ,

$（##+ *#+
#），写作

## *#+
# , $1$0 （-2）

将上式代入方程（-.(），各项乘以 "#$"，导出另一初
积分

!’ "#$
&" % $()"" , %， （-3）

其物理意义为杆截面上作用力对截面中心的主矩沿

& 轴的投影守恒 0积分常数 % , ’+ 1!，’+ 为主矩的

& 轴投影，等于杆端作用的扭矩 !+ 的模 0杆的初始
状态为直杆时，!+ 与截面内力绕 # 轴的扭矩平衡

’+ , "（##+ *#+
#）， （&+）

即 % , $ 0如外加扭矩 ’+ 始终保持常值，则参数 %
与$ 恒保持相等 0（-3）式化作

!’ "#$
&" * % - * ()"( )" , +0 （&-）

利用（-2），（&-）式消去方程（-.4）中的变量!’ 和##

*#+
#，引入 ( , &)+ 1!，得到变量"的解耦的微分
方程

5&"
5 *& % +（"）, +， （&&）

函数 +（"）定义为

+（"）,
%& "#$"

6 ()""( )&
*6

* &(
%[ ]& 0 （&7）

方程（&&）的常值特解"+，即 +（"+）, +的解对
应于杆的平衡状态 0其中"+ , +或!为平凡解，对
应于受拉扭或压扭的直杆状态 0"+ 的非平凡解为

"+ , &48(()"
6
%&
&!( )( ， （&6）

与杆的螺旋线平衡状态相对应，以"+ 为螺旋线相对

中轴线的倾角，其存在条件为

&( 1 %& 9 - 0 （&:）
方程（-.4）提供了与"+ 对应的!’ , #+ 应满足的

条件

&#+ #+ ()""+ *( )% % ( , +0 （&;）
可从中确定螺旋线半径 , , "#$"+ 1#+ 与轴向拉力

)+ 之间的关系 0其与扭矩 ’+ 的关系由（&+）式确定 0
螺旋线倾角"+随参数 &( 1 %&的增大而增大，当 &( 1 %&

向 6趋近时，非平凡解"+ 趋近 3+<（图 ;）0此时螺距
趋近于零，螺旋线接近由多个叠放的平面圆环连成

的曲线 0但实际上此极限状态不可能发生 0对于具有

一定粗细的实体杆，在"+ 到达 3+<以前螺圈之间必
相互接触，此后"+ 即保持不变 0而接触力的出现将
使 =#8(>>)??模型失去依据 0

: @ 平衡状态的稳定性与分岔

为判断平衡状态的稳定性，引入扰动量 - , "
*"+，只保留 - 的一次项，从方程（&&）导出平衡状态

"+ 附近的线性化扰动方程

5& -
5 *& % .- , +， （&.）

其中常数 . , 5+ 15( )" ","+
展开为

. , %&
6 ()""+( )&

*6

* &(
%[ ]& ()""+ * "#$&"{ }+ 0

（&2）
稳态解"+ 的一次近似 AB4CD$)E稳定性取决于参数

图 ; "+ 的稳态值随 &(1 %& 变化的分岔图

. 的符号，

.
9 +，稳定，
F +，不稳定{ 0

（&3）

对于"+ , + 的平凡解，其稳定性条件即周知的

G8HH$>#II公式［;］

&( 1 %&
F -，
9 -{ ，或 )+

F )+，(8，稳定，

9 )+，(8
{ ，不稳定，

（7+）

其中 )+，(8 , ’&
+ 16! 0对于"+ , &48(()" 6

%& 1&!( )( 的
非平凡解，满足 &( 1 %& 9 -的存在条件即同时满足稳
定性条件 0从而证明，&( 1 %& 是判断螺旋线平衡状态
存在性的重要参数，以 &( 1 %& , -为分岔点 0 &( 1 %& F
-时存在唯一的稳定直杆平衡状态，&( 1 %& 9 - 时，
直杆状态转为不稳定，出现稳定的螺旋杆状态 0图 ;
为"+ 的稳态值随 &( 1 %& 变化的分岔图，分别以实心
和空心曲线表示稳定和不稳定平衡状态 0但仅适用
于螺圈之间尚未接触情形 0
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!" 受拉扭弹性杆形成超螺旋形态的定
性分析

讨论带原始扭率!#
! 的圆截面杆在轴向拉力 !#

和扭矩 "# 作用下的平衡状态 $设初始时拉力 "# 和

扭矩 ## 满足 %$ & %% ’ (条件，处于稳定的直杆平衡
状态 $在 ## 保持不变的条件下增大拉力 "#，则

%$ & %% 单调增大，直杆状态保持到分岔值 %$ & %% ) (
时结束 $随后在 %$ & %% * (条件下，转变为稳定的螺
旋杆状态 $随着拉力 "# 的增大，"# 角从零开始随

%$ & %% 的增大而增大，螺距随之缩小 $对于给定的扭
矩 % 和倾角"# ，螺旋线半径 & 由（%(）式确定：

& )
+,-."#

% ( / 01+"( )#
$ （.(）

将上式对"# 求导，得到

2&
2"#

)
+,-%"# %01+"# /( )(

% ( / 01+"( )#
$ （.%）

导数 2& &2"# 的符号随"# 角改变：

2& &2"#

* #， # ’"# ’ !#3，

’ #， !#3 ’"# ’{ 4#3$
（..）

表明螺旋线半径 &从零开始随"# 角的增大而增大，

至"# ) !#3时到达最大值，然后转为随"#角增大而

逐渐减小 $
根据上节的分析，螺旋线状态在 %$ & %% * (条件

下为稳定的平衡状态 $但极端细长的直螺旋杆却有
可能整体失稳 $其稳定性可利用与螺旋杆等效的直
杆抗弯刚度!’ 和抗扭刚度!( 判断 $引入与等效直杆
对应的参数

%5 ) ## &!’，$
5 ) %"# &!’，%$

5 & %5 % ) 6!’"# &#%
#，（.6）

其中!’，!(为螺旋线倾角"#的函数，如（7），（(!）式所
示 $由于等效抗弯刚度!’ 随"# 的增大而减小，参数

% $5 & %5 % ’ %$ & %% $ 因此当 %$ & %% * (时，仍可能满足

%$5 & %5 % ’ (条件，使螺旋杆的中轴线保持为稳定的

直线 $继续增大拉力 "#，使 %$5 & %5 %增大到 %$5 & %5 % )
(的分岔值时，根据等效直杆的稳定性条件，与螺旋

杆等效的稳定直杆状态结束 $随后在 %$5 & %5 % * (条

件下，中轴线转变为螺旋线 $对应的细长螺旋杆再次
卷绕，形成超螺旋形态 $用同样方法分析再次卷绕的
超螺旋，引入参数

%
55

) ## & ’
55
，$
55

) %"# & ’
55
，

% $
55
& %
55 % ) 6’

55
"# &#%

#，

（.8）

其中的等效抗弯刚度 ’
55
和抗扭刚度 (

55
定义为

’
55

)!’01+!"# ( 9 ( /"( )#
%"#

+,-%!"[ ]#

/(
，

(
55

)!(01+!"# ( 9 "# /( )( +,-%!"[ ]#
/(，

（.!）

其中!"#为超螺旋的倾角，"# )!( &!’ $随着拉力 !#的

继续增大，当 % $
55
& %
55 % ) (条件满足时，超螺旋的等

效直杆状态结束，直中轴线转变为螺旋线，形成更高

级次的超螺旋 $
若将最初形成的螺旋杆称为零级超螺旋，再次

卷绕形成的状态称为一次超螺旋 $继续此过程，形成
二次、三次、乃至更高级次的超螺旋 $上述 :;1<=+1-&
>;?<=-@A实验现象的力学过程可由此得到定性的
理论解释 $

B " 结 论

文中基于弹性杆的 C,D0;;1EE模型导出细长螺旋
杆的等效抗弯和抗扭刚度 $利用此等效刚度概念，以
及弹性直杆和螺旋杆的平衡稳定性条件，可以对

:;1<=+1-&>;?<=-@A实验显示的受拉扭弹性细杆形
成超螺旋形态的多次卷绕现象作定性解释 $由于
C,D0;;1EE模型的无分布力假设条件的局限性，文中
的分析不适用于卷绕过程中螺旋杆的螺圈之间出现

接触的情形 $此外，定性的稳定性分析虽能解释超螺
旋形态的形成，但不能描述直杆失稳后转变为螺旋

杆的变形过程 $对于实验中观察到的直杆失稳后在
中端产生突变式屈曲的复杂过程，可参阅 >1A-@，
:;1<=+1-和 F?- 2@D G@,H2@-的工作［!—7］$

［(］ I1J0;,?K >，L@M?D2 L L %### )*+, $ -./0 $ 1,*+2 $ N ! .BB
［%］ :D?F@D+ O O，:;1<=+1- L : %##6 -.3% $ 4+520 $ &,/5% 6,7389/

:,2;,2 "#! (%!8
［.］ :;1<=+1- P L :，>;?<=-@A O Q (44! -+,7 $ &,/ $ 6,7 $ O $%!

((B
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