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1 Ú ó

�`��¯K´ÔnÆ.���©'5�ï
Ä�K, §��ÐïÄé�´d����!ÊUì
��!Ê°�Ê¥¤o(Ñ5��aU,�5U
�I��` (5U�I��4�½4�) ���¯
K [1]. �X�`��nØ�uÐ, §3ÔnÆ�N
õ�¡, ~X>^{Zì [2]!và�Ôn!6Nå
Æ!UNÔn!�íÔn!�5nØ�+�Ñk
Xé2��A^ [3]. ÙØ%¯KÒ´�`��¤
÷v�7�5^�, ���/e´�X����5
¯K. éu��5¯K�ïÄ�)
�þ�{, Ù
¥�)²þz�{!>.�nØ [4]!ìC��Ð
m{ [5]!õºÝ�{±9C©S�{ [6] ��. ©
z [7—17] |^�©Ø�ª!ÓÔC�!ØÄ:�
n�nØÚ�{3-Å!�fnØ!�A*Ñ�
�X���5¯K¥�
�\ïÄ.

Cc5, �5�õ�Æö'5uÛÉ�Ä�`
��¯K [18−21], ¿��
´L�¤J. �þ�ï
ÄL², ¢S�.�)Ø
3>.�«�u)ì�
Cz	, 3«�SÜÓ�¬u):ìCz, =�)
SÜ=£� [22]. SÜ=£��A:´3¤?Ø«
m�,���S, �.)�(�¬u)ì�Cz,
��ëêª�u"�ù«)©Oª�uØÓ�ò
z). �©ò|^ÛÉ�Ä�{ïÄ�a�`��

¯K¥�SÜ=£�).

2 ÛÉ�Ä�`���.

�ÄXe�a�`��¯K:

min
u

J [u] =
∫ b

a

(
f(y, t) +

1
2
uTu

)
dt,

µ
dy

dt
= u,

y(a, µ) = ya,

y(b, µ) = yb,

(1)

Ù¥ y(t) ∈ Rn, u(t) ∈ Rn, µ > 0 ´�ëê.

é¤J¯K (1) ª�Xeb�: �¼ê f(y, t)
3«� D = {(y, t)| | y |< A, a 6 t 6 b} þ¿
©1w, Ó��3pØ���ü¼ê ȳ = ϕ1(t),
ȳ = ϕ2(t) (a 6 t 6 b), ¦�

min
y

f(y, t) =

 f(ϕ1(t), t) (a 6 t 6 t1),

f(ϕ2(t), t) (t1 6 t 6 b),

Ù¥ A �,��½�~ê. dþãb���

fy(ϕ1(t), t) = 0,

fy(ϕ2(t), t) = 0.

� a = t0 < t1 < t2 = b , � τi = (t−ti)/µ(i = 0, 2),
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τ1 = (t − t∗)/µ, Ù¥ t∗(µ) ∈ [t0, t2], /X

t∗ = t1 + µt11 + · · · + µkt1k + · · · .

b � qi(τi) = (qi1(τi), qi2(τi))T ´ e � �
§�):

q′i1(τi) = qi2(τi),

q′i2(τi) = fy(qi1(τi), ti),

Ù ¥ qi1(τi) → ϕi(ti), τi → −∞(i = 1, 2), �
qi1(τi) → ϕi+1(ti), τi → +∞(i = 0, 1), q01(τ0)
Ú q21(τ2) ©O÷v>�^�

q01(0) = ya,

q21(0) = yb.

b��§

| λIn − fyy(ϕi(t), t) |= 0 (i = 1, 2)

k n � � � A � � λ1(t), · · · , λn(t) � ÷
v min

16j6n
λj(t) > λ0 > 0, t ∈ [a, b].

�5àg�§

φ′
i(τi) − Aφi(τi) = 0, (2)

ÙéA��Ý�§�

ψ′
i(τi) + A∗ψi(τi) = 0, (3)

Ù¥

φi(τi) = (φi1(τi), φi2(τi))T,

ψi(τi) = (ψi1(τi), ψi2(τi))T,

A =

 0 In

fyy(qi1(τi), ti) 0

 (i = 0, 1, 2).

b � φ0(τ0) Ú φ2(τ2) ´ � § (2) ¥ � © O
� i = 0 Ú i = 2 ���²�), Ó�÷v φ0(0) 6=
0, φ2(0) 6= 0. b� q′1(τ1) ´�§ (2) ¥� i = 1 �
����²�), ¿�∫ ∞

−∞
ψ∗

12fyt(q11(τ1), t1)dτ1 6= 0.

Ú? Hamilton ¼ê

H(y, u, λ, t) = f(y, t) +
1
2
uTu + λTµ−1u,

Ù¥ λ(t) ´ Lagrange ¦f. l�`)�7�^

���

µẏ = u,

λ̇ = −fy(y, t),

µu + λ(t) = 0,

y(a, µ) = ya,

y(b, µ) = yb.

(4)

l�§ (4) ¥�� λ(t) �, ��

µẏ = u,

µu̇ = fy(y, t),

y(a, µ) = ya,

y(b, µ) = yb.

(5)

w,�§ (5) ´;.�ÛÉ�Ä�§. e¡·�ò
y²�§ (5) �3SÜ=£�).

3 SÜ�)��35

ÛÉ�Ä�§ (5) ´©z [23] �AÏ�¹, ·
�òy²3�Ñ�^�e�¯K (1) ª�3SÜ�
). �d, k�Ñ�§ (5) �9Ï�§

dy

dτ
= u,

du

dτ
= fy(y, t̄),

(6)

Ù¥ t̄ ´ [a, b] ¥��½�. w,, Mi

(
ϕi(t̄), 0

)
(i =

1, 2) ÷vòz�§|

u = 0,

fy(y, t̄) = 0.

?�Ú(½T²ï:�a., �Ñ�éA�A��
§ det(λI − B) = 0, Ù¥

B =

 0 In

fyy(ϕi(t̄), t̄) 0

 (i = 1, 2).

dd��

det(λI − B) =
n∏

i=1

(λ2 − λi) = 0,

¤± Mi(ϕi(t̄), 0)(i = 1, 2) Ñ´V­Q:. (Ü�
ê�©{Ú Fredholm J�nØ��, � i = 1 ��
§ (3) �3��k.). nþ¤ã��, �§ (5) ÷
v©z [23] ¥½n 2.1 �¤k^�, l
�`��
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¯K (1) ª�3äk�F(��) y(t, µ), =

lim
µ→0

y(t, µ) =

 ϕ1(t) (a 6 t < t1),

ϕ2(t) (t1 < t 6 b).

4 /ªìC)��E

�â��Ðm{ [24], b��`��¯K (1) ª
�/ªìC?ê�

y(t, µ) =
∞∑

k=0

µk(ȳk(t) + Lky(τ0)

+ Q
(−)
k y(τ1)) (a = t0 6 t < t∗),

u(t, µ) =
∞∑

k=0

µk(ūk(t) + Lku(τ0)

+ Q
(−)
k u(τ1));

(7)

y(t, µ) =
∞∑

k=0

µk(ȳk(t) + Q
(+)
0 y(τ1)

+ Rky(τ2)) (t∗ < t 6 t2 = b),

u(t, µ) =
∞∑

k=0

µk(ūk(t) + Q
(+)
0 u(τ1)

+ Rku(τ2)),

(8)

Ù¥

τ0 = (t − t0)µ−1,

τ1 = (t − t∗)µ−1,

τ2 = (t − t2)µ−1,

Lky(τ0) ´�>.��Xê, Rky(τ2) ´m>.��
Xê, Q

(−)
k y(τ1) Ú Q

(+)
k y(τ1) ©O´�mSÜ��

Xê. =£: t∗(µ) ∈ [t0, t2], /X

t∗ = t1 + µt11 + · · · + µkt1k + · · · .

(Ü©z [25] ���(J

min
u

J [u] =min
u0

J(u0)

+
n∑

i=1

µi min
ui

J̃i(ui) + · · · ,

r/ªìC) (7), (8) ª�\� (1) ª¥U¯úC
þ t, τ0, τ1 � τ2 ©l, 2'� µ �Óg�, �±
��(½ (7), (8) ª¥�� ȳk(t), ūk(t), Lky(τ0),
Lku(τ0), Q

(∓)
k y(τ1), Q

(∓)
k u(τ1), Rky(τ2), Rku(τ2),

(k > 0) ��X��`��¯K. ùp

J̃i(ui) =Ji(ui, ũi−1, · · · , ũ0),

ũk =arg(min
uk

J̃k(uk)),

(k = 0, 1, · · · , i − 1).

"g�K� ȳ0(t), ū0(t) ¤÷v�¯K�

min
ū0

J0(ū0) =
∫ t2

t0

f(ȳ0, t)dt,

ū0 = 0,

l
��

ȳ0 =

 ϕ1(t) (t0 6 t < t1),

ϕ2(t) (t1 < t 6 t2),

ū0 =

 0 (t0 6 t < t1),

0 (t1 < t 6 t2).

·�k�Ñ¦ Q
(∓)
0 y(τ1), Q

(∓)
0 u(τ1) ��§

min
Q

(∓)
0 u

Q
(∓)
0 J =

∫ 0(+∞)

−∞(0)

(
∆

(∓)
0 f(ϕ1,2(t1)

+ Q
(∓)
0 y, t1)

+
1
2
Q

(∓)T
0 uQ

(∓)
0 u

)
dτ1,

d
dτ1

Q
(∓)
0 y =Q

(∓)
0 u,

(9)

Ù¥

∆
(∓)
0 f(ϕ1,2(t1) + Q

(∓)
0 y, t1)

=f(ϕ1,2(t1) + Q
(∓)
0 y, t1) − f(ϕ1,2(t1), t1).

�§ (9) ¤÷v�>�^��

Q
(∓)
0 y(∓∞) = 0,

Q
(∓)
0 y(0) = β(t1) − ϕ1,2(t1).

�Ä Hamilton ¼ê

H(Q(∓)
0 y,Q

(∓)
0 u, λ, τ1)

=∆
(∓)
0 f(ϕ1,2(t1)

+ Q
(∓)
0 y, t1) +

1
2
Q

(∓)T
0 uQ

(∓)
0 u + λTQ

(∓)
0 u.

l�`)�7�^���

dQ
(∓)
0 y

dτ1
= Q

(∓)
0 u,

λ′ = −fy(ϕ1,2 + Q
(∓)
0 y, t1),

Q
(∓)
0 u + λ(τ1) = 0,

Q
(∓)
0 y(0) = β(t1) − ϕ1,2(t1),

Q
(∓)
0 y(∓∞) = 0.

(10)
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d�§ (10) ��

dQ
(∓)
0 y

dτ1
= Q

(∓)
0 u,

dQ
(∓)
0 u

dτ1
= fy(ϕ1,2(t1) + Q

(∓)
0 y, t1),

Q
(∓)
0 y(0) = β(t1) − ϕ1,2(t1),

Q
(∓)
0 y(∓∞) = 0,

(11)

K

Q
(∓)
0 u(τ1) = q

(∓)
12 (τ1),

Q
(∓)
0 y(τ1) = q

(∓)
11 (τ1) − ϕ1,2(t1).

� e 5, · � � Ñ ( ½ L0y(τ0), L0u(τ0)
��§

min
L0u

L0J =
∫ ∞

0

(
∆0f(ϕ1(t0) + L0y, t0)

+
1
2
LT

0 uL0u
)

dτ0,

d
dτ0

L0y =L0u,

(12)

Ù¥

∆0f(ϕ1(t0) + L0y, t0)

=f(ϕ1(t0) + L0y, t0) − f(ϕ1(t0), t0).

�§ (12) ÷v>�^�

L0y(∞) = 0,

L0y(0) = ya − ϕ1(t0).

aq/, (½ R0y(τ2), R0u(τ2) ��§�

min
R0u

R0J =
∫ 0

−∞

(
∆0f(ϕ2(t2) + R0y, t2)

+
1
2
RT

0 uR0u
)

dτ2,

d
dτ2

R0y =R0u,

(13)

Ù¥

∆0f(ϕ2(t2) + R0y, t2)

=f(ϕ2(t2) + R0y, t2) − f(ϕ2(t2), t2).

�§ (13) ÷v>�^�

R0y(−∞) = 0,

R0y(0) = yb − ϕ2(t2).

a q u Q
(∓)
0 y(τ), Q(∓)

0 u(τ) � ? Ø, � ± (
½ L0y(τ0), L0u(τ0), R0y(τ2), R0u(τ2) ©O÷v

dL0y

dτ0
= L0u,

dL0u

dτ0
= fy(ϕ1(t0) + L0y, t0),

L0y(0) = ya − ϕ1(t0),

L0y(∞) = 0;

(14)

dR0y

dτ2
= R0u,

dR0u

dτ2
= fy(ϕ2(t2) + R0y, t2),

R0y(0) = yb − ϕ2(t2),

R0y(−∞) = 0.

(15)

l
��

L0u(τ0) = q02(τ0),

L0y(τ0) = q01(τ0) − ϕ1(t0),

R0u(τ2) = q22(τ2),

R0y(τ2) = q21(τ2) − ϕ2(t2).

ù �, · � Ò é � 
 ì C ) ¤ k Ì � � �
`) ȳ∗

0(t), ū∗
0(t), L0y

∗(τ0), L0u
∗(τ0), Q

(∓)
0 y∗(τ1),

Q
(∓)
0 u∗(τ1), R0y

∗(τ2), R0u
∗(τ2). d	, ��±�Ñ

�A8I¼ê��`�. ùpI��Ñ�´, ��
�/e��¼ê�ìC)¿Ø´NN��, ¦+X
d, Ï�¯K�AÏ5, ÏL\þ�1¼ê�±�
Eäk�Ók�ìC�O�/ªìC), 3dØ2
Kã. (Ü©z [23] �Ì�(J��, �`��¯
K (1) ª�3SÜ�) y(t, µ), �äkXeìCL
�ª:

y(t, µ) =



ϕ1(t) + L0y(τ0) + Q
(−)
0 y(τ1) + O(µ)

(a = t0 6 t < t1),

ϕ2(t) + Q
(+)
0 y(τ1) + R0y(τ2) + O(µ)

(t1 < t 6 t2 = b).

ùp��¼ê u(t, µ) �ìCL�ª�

u(t, µ) =



L0u(τ0) + Q
(−)
0 u(τ1) + O(µ)

(a = t0 6 t < t1),

Q
(+)
0 u(τ1) + R0u(τ2) + O(µ)

(t1 < t 6 t2 = b).

080203-4



Ô n Æ � Acta Phys. Sin. Vol. 61, No. 8 (2012) 080203

5 � ~

�ÄXeäN�`��¯K:

min
u

J [u] =
∫ 2π

0

(
1
4
y4 − 1

3
y3 sin t

− y2

2
+ y sin t +

1
2
u2

)
dt,

µ
dy

dt
=u,

y(0, µ) =0,

y(2π, µ) =2,

(16)

Ù¥ y ∈ R, u ∈ R. ùp

ȳ0(t) =

−1 (0 6 t < π),

1 (π < t 6 2π).

éu¯K (16) ª, N´�yÙ÷v¤kb�. e¡
|^þã�{5�EÙ��k�ìC). ÏLO�
��, Q

(∓)
0 y � Q

(∓)
0 u ÷vXe�§:

d
dτ1

Q
(∓)
0 y =

√
2

2
(
1 − (∓1 + Q

(∓)
0 y)2

)
,

d
dτ1

Q
(∓)
0 y = Q

(∓)
0 u.

T�§÷v>�^�

Q
(∓)
0 y(∓∞) = 0,

Q
(∓)
0 y(0) = ±1.

l
��

Q
(−)
0 y =

2 exp(
√

2τ1)
1 + exp(

√
2τ1)

,

Q
(−)
0 u =

2
√

2 exp(
√

2τ1)
(1 + exp(

√
2τ1))2

,

Q
(+)
0 y =

−2
1 + exp(

√
2τ1)

,

Q
(+)
0 u =

2
√

2 exp(
√

2τ1)
(1 + exp(

√
2τ1))2

.

Ón, ·�k

L0y =
2 exp(−

√
2τ0)

1 + exp(−
√

2τ0)
,

L0u =
−2

√
2 exp(−

√
2τ0)

(1 + exp(−
√

2τ0))2
,

R0y =
−2

3 exp(−
√

2τ2) − 1
,

R0u =
−6

√
2 exp(−

√
2τ2)

(3 exp(−
√

2τ2) − 1)2
.

l
��¯K (16) ª�/ªìC)�

y(t, µ) =


−1 +

2 exp(−
√

2τ0)
1 + exp(−

√
2τ0)

+
2 exp(

√
2τ1)

1 + exp(
√

2τ1)
+ O(µ) (0 6 t < π),

1 +
−2

1 + exp(
√

2τ1)
+

−2
3 exp(−

√
2τ2) − 1

+ O(µ) (π < t 6 2π),

u(t, µ) =


−2

√
2 exp(−

√
2τ0)

(1 + exp(−
√

2τ0))2
+

2
√

2 exp(
√

2τ1)
(1 + exp(

√
2τ1))2

+ O(µ) (0 6 t < π),

2
√

2 exp(
√

2τ1)
(1 + exp(

√
2τ1))2

+
−6

√
2 exp(−

√
2τ2)

(3 exp(−
√

2τ2) − 1)2
+ O(µ) (π < t 6 2π).

6 ( Ø

�©æ^��Ðm{?Ø
�a�`��¯

K. ÏL��Ðm��
#���S�, ùØ�{
z
�¯K�E,5, 
���«
C©���,
l
�?�Ú�«Ônþ�m�'XJø
�â.
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Internal layer solution of singularly perturbed
optimal control problem∗
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Abstract

A class of singularly perturbed optimal control problem is studied by direct scheme method, which is based on the boundary

function method. The internal layer solution is proved to be existing, and the uniformly valid asymptotic solution for the singularly

perturbed optimal control problem is constructed.
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