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变系数 (2+1)维 Nizhnik-Novikov-Vesselov

方程的三孤子新解*
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本文为获得非线性发展方程的相互作用解,研究了辅助方程法,并扩展应用辅助方程法和 (G′/G)展开法,获得

了变系数非线性 (2+1)维 Nizhnik-Novikov-Vesselov方程的由椭圆函数、双曲函数、三角函数和有理函数混合构成

的新相互作用解.
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1 引 言

在最近几年里,由于孤立子理论在自然科学领
域中的广泛应用,所以寻求非线性偏微分方程的精
确解就变得十分重要.构造非线性偏微分方程精确
解的方法有很多,而且这些方法都已经得到了很好
的发展.比如, Jacobi椭圆函数展开法 [1], Bäcklund
变换 [2], Hirota双线性方法 [3], Wronskian形式展开
法 [4],椭圆方程方法 [5−7],双辅助方程法 [8,9],齐次
平衡法 [10], Riccati方程有理展开法 [11] 等等. 但是,
到目前为止还没有一种统一的方法能够求解所有

类型的非线性偏微分方程.
最近,有人提出了一种求非线性偏微分方程精

确解的方法, 即 (G′/G)展开法. 其中 G(ξ )满足一
个二阶常微分方程 G

′′
(ξ )+λG′(ξ )+µG(ξ ) = 0, λ

和 µ 是任意常数. 这种方法的主要思路就是借助
辅助方程的解以及 (G′/G)展开形式求非线性偏微

分方程的解. 对于该方法的具体应用可以参考文献
[12—14].
本文使用扩展的辅助方程法和 (G′/G)展开法

构造变系数非线性偏微分方程的解,获得了变系数
(2+1)维 Nizhnik-Novikov-Vesselov方程的新相互作
用解—-三孤子解. 这些相互作用解混合了有理函
数、三角函数、双曲函数以及雅克比椭圆函数. 变
系数 (2+1) 维 Nizhnik-Novikov-Vesselov 方程是数
学物理中最重要的方程之一,被许多人研究 [15−17].
该方程为

ut + k(t)uxxx + r(t)uyyy + s(t)ux +q(t)uy

−3k(t)(uv)x −3r(t)(uω)y = 0,

ux − vy = 0, (1)

uy −ωx = 0.

其中 k(t), r(t), q(t), s(t)是关于 t 的任意函数.

2 方法介绍

该方法的主要步骤如下:
步骤 1 考虑下面非线性发展方程:

H(u,ut ,ux,uy,uxy,uty,

uxt ,utt ,uxx,uyy, · · ·) = 0. (2)
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假设方程 (2)的三孤子解的一般形式为

u(x,y, t) = a0(x,y, t)+
n

∑
k=1

∑
i+ j+l=k

ai jl(x,y, t)ϕ i(ξ )

×
(

G′(η)

G(η)

) j(F ′(θ)
F(θ)

)l

, (3)

其中 a0(x,y, t), ai jl(x,y, t) (i, j, l = 0,1,2, · · · ,n)为待
定系数. 通过齐次平衡法, 即利用给定方程的最高
阶非线性项和最高阶导数项,就能确定正整数 n.
步骤 2 新的变量 ϕ(ξ ), G(η)和 F(θ)分别满

足以下三个辅助方程:

ϕ ′(ξ ) = Q+Rϕ(ξ )+Pϕ 2(ξ ), (4)

其中 Q, R, P 是任意常数, 而且 P ̸= 0, ξ = k1x+
m1y+λ1(t).

G
′′
(η)+λG′(η)+µG(η) = 0, (5)

其中 λ , µ 是任意常数, η = k2x+m2y+λ2(t).

(F ′(θ))2 = A+BF2(θ)+CF4(θ), (6)

其中 A, B, C 是任意常数, 而且 C ̸= 0, θ = k3x+
m3y+λ3(t). k1, k2, k3, m1, m2, m3是待定常数, λ1(t),
λ2(t), λ3(t),是关于 t 的待定函数.
步骤 3 借助辅助方程 (4), (5), (6), 把 (3)

代入到 (2) 式中左端, 整理得到一个关于

ϕ i(ξ )
(

G′(η)

G(η)

) j(F ′(θ)
F(θ)

)l

(i, j, l = 0,1,2, · · ·) 的多

项式,令每一项的系数为零,得到关于 k1, k2, k3, m1,
m2, m3, λ1(t), λ2(t), λ3(t), a0(x,y, t) 以及 ai jl(x,y, t)
的微分方程组. 解这个微分方程组, 得到 k1, k2,
k3, m1, m2, m3, λ1(t), λ2(t), λ3(t), a0(x,y, t) 以及
ai jl(x,y, t)的解或表达式.
步骤 4 把 a0(x,y, t), ai jl(x,y, t) (i, j, l = 0,1,

2, · · · ,n), k1, k2, k3, m1, m2, m3, λ1(t), λ2(t), λ3(t)以
及辅助方程 (4), (5), (6)的解代入到 (3)式中, 就得
到非线性发展方程 (2)的解.
步骤 5 辅助方程包括 Riccati方程 (4),线性常

微分方程 (5)和椭圆方程 (6),它们的解列在表 1—3
中, 利用这些解就能得到非线性发展方程 (2)的一
系列相互作用解.

3 变系数 (2+1) 维 Nizhnik-Novikov-
Vesselov方程的三孤子新解

下面利用上述方法构造变系数 (2+1) 维

Nizhnik-Novikov-Vesselov方程 (1)的三孤子解.

通过平衡 (1)的最高阶非线性项和最高阶导数

项,得到 n1 = 2, n2 = 2, n3 = 2. 为简化计算量,假设

方程 (1)的三孤子解的形式为

u(x,y, t) = a0(t)+a1(t)ϕ(ξ )

+a2(t)
G′(η)

G(η)
+a3(t)

F ′(θ)
F(θ)

,

v(x,y, t) = b0(t)+b1(t)ϕ(ξ )

+b2(t)
G′(η)

G(η)
+b3(t)

F ′(θ)
F(θ)

, (7)

ω(x,y, t) = c0(t)+ c1(t)ϕ(ξ )

+ c2(t)
G′(η)
G(η)

+ c3(t)
F ′(θ)
F(θ)

,

其中 a0(t), b0(t), c0(t), ai(t), bi(t), ci(t), ki, mi,

λi(t)(i = 1,2,3), ξ = k1x + m1y + λ1(t), η = k2x +

m2y+ λ2(t), θ = k3x+m3y+ λ3(t) 待定. 借助辅助

方程 (4), (5)和 (6), 把 (7)式代入到 (1)式中, 整理

得到关于 ϕ i(ξ )
(

G′(η)
G(η)

) j(F ′(θ)
F(θ)

)l
(i, j, l = 0,1,2, · · ·)

的多项式. 令每一项的系数都为零, 得到关于 k(t),

r(t), q(t), s(t), a0(t), b0(t), c0(t), ai(t), bi(t), ci(t), ki,

mi, λi(t)(i = 1,2,3)的微分方程组. 求解这个微分方

程组, 得到许多组解. 这里, 给出最具代表性的一

组解:

k1 = k1, k2 = k2, k3 = k3,

m1 =
k1m2

k2
, m2 = m2, m3 =

k3m2

k2
,

k(t) = k(t), q(t) = q(t), s(t) = s(t),

r(t) =−
k(t)k3

2

m3
2

, a0(t) =C4,

a1(t) =C7, a2(t) =C6,

a3(t) =C5, b0(t) = b0(t),

b1(t) =
a1(t)k2

m2
, b2(t) =

a2(t)k2

m2
,

b3(t) =
a3(t)k2

m2
, c0(t) = c0(t),

c1(t) =
a1(t)m2

k2
, c2(t) =

a2(t)m2

k2
,

c3(t) =
a3(t)m2

k2
,
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λ1(t) =
∫ (

−
k1(3k(t)k3

2c0(t)+m2
2s(t)k2 +q(t)m3

2 −3m2
2k(t)k2b0(t))

m2
2k2

)
dt +C3,

λ2(t) =
∫ (

−
3k(t)k3

2c0(t)+m2
2s(t)k2 +q(t)m3

2 −3m2
2k(t)k2b0(t)

m2
2

)
dt +C2, (8)

λ3(t) =
∫ (

−
k3(3k(t)k3

2c0(t)+m2
2s(t)k2 +q(t)m3

2 −3m2
2k(t)k2b0(t))

m2
2k2

)
dt +C1.

方程 (4)—(6)的解见表 1—3.

表 1 Riccati方程 (4)的一般解

∆ = R2 −4PQ ϕ(ξ )

∆ > 0 ϕ(ξ ) =−R+
√

∆
2P

tanh

(√
∆

2
ξ

)

∆ > 0 ϕ(ξ ) =−R+
√

∆
2P

coth

(√
∆

2
ξ

)
∆ < 0 ϕ(ξ ) =−R−

√
−∆

2P
tan
(√

−∆
2

ξ
)

∆ < 0 ϕ(ξ ) =−R−
√
−∆

2P
cot
(√

−∆
2

ξ
)

R = Q = 0,P ̸= 0 ϕ(ξ ) =
−1

pξ +H1

表 2 线性常微分方程 (5)的 G′(η)/G(η)形式解

λ .µ G′(η)/G(η)

λ 2 > 4µ G′(η)/G(η) =−λ
2
+

√
λ 2 −4µ

2

c1 sinh
(√

λ2−4µ
2 η

)
+ c2 cosh

(√
λ2−4µ

2 η
)

c1 cosh
(√

λ2−4µ
2 η

)
+ c2 sinh

(√
λ2−4µ

2 η
)

λ 2 < 4µ G′(η)/G(η) =−λ
2
+

√
4µ −λ 2

2

−c1 sin

(√
4µ −λ 2

2
η

)
+ c2 cos

(√
4µ −λ 2

2
η

)

c1 cos

(√
4µ −λ 2

2
η

)
+ c2 sin

(√
4µ −λ 2

2
η

)
λ 2 = 4µ G′(η)/G(η) =−λ

2
+

c2

c1 + c2η

表 3 椭圆方程 (6)的一般解

A B C F(θ) F ′(θ)

r2 −(1+ r2) 1 sn(θ ,r),cd(θ ,r) cn(θ ,r)dn(θ ,r),(−1+ r2cd2(θ ,r))sn(θ ,r)

−r2 2r2 −1 1− r2 cn(θ ,r) −sn(θ ,r)dn(θ ,r)

−1 2− r2 r2 −1 dn(θ ,r) −r2sn(θ ,r)cn(θ ,r)

1 −(1+ r2) r2 ns(θ ,r),dc(θ ,r) −cs(θ ,r)ds(θ ,r),(−r2 +dc2(θ ,r))sn(θ ,r)

1− r2 2r2 −1 −r2 nc(θ ,r) sc(θ ,r)dc(θ ,r)

r2 −1 2− r2 −1 nd(θ ,r) r2sd(θ ,r)cd(θ ,r)

1− r2 2r2 −1 1 sd(θ ,r) (1+ r2sd2(θ ,r))cn(θ ,r)

1 2− r2 1− r2 cs(θ ,r) (−1− cs2(θ ,r))dn(θ ,r)

1 2r2 −1 r2(1− r2) ds(θ ,r) (−r2 −ds2(θ ,r))cn(θ ,r)

表中 H1 是积分常数,c1 和 c2 是任意常数, r是 Jacobi椭圆函数的模数,ns(θ ,r) =
1

sn(θ ,r)
, nc(θ ,r) =

1
cn(θ ,r)

, nd(θ ,r) =
1

dn(θ ,r)
,

cd(θ ,r) =
cn(θ ,r)
dn(θ ,r)

, dc(θ ,r) =
dn(θ ,r)
cn(θ ,r)

, ds(θ ,r) =
dn(θ ,r)
sn(θ ,r)

, sd(θ ,r) =
sn(θ ,r)
dn(θ ,r)

, cs(θ ,r) =
cn(θ ,r)
sn(θ ,r)

, sc(θ ,r) =
sn(θ ,r)
cn(θ ,r)

.
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根据表 1、表 2和表 3,把 (8)式代入 (7)式中,
得到 (1)式的三孤子新解. 例如:

1) 如果 ∆ > 0, λ 2 < 4µ , 而且 A = r2, B =

−(1+ r2), C = 1,则有

u(x,y, t)

=C4 +C7

(
−R+

√
∆

2P
tanh(

√
∆

2
ξ )

)

+C6

(
−λ

2
+

√
4µ −λ 2

2

×
−c1 sin

(√
4µ−λ 2

2 η
)
+ c2 cos

(√
4µ−λ 2

2 η
)

c1 cos
(√

4µ−λ 2

2 η
)
+ c2 sin

(√
4µ−λ 2

2 η
)


+C5
cn(θ ,r)dn(θ ,r)

sn(θ ,r)
,

v(x,y, t)

= b0(t)+
C7k2

m2

(
−R+

√
∆

2P
tanh

(√
∆

2
ξ

))

+
C6k2

m2

(
−λ

2
+

√
4µ −λ 2

2

×
−c1 sin

(√
4µ−λ 2

2 η
)
+ c2 cos

(√
4µ−λ 2

2 η
)

c1 cos
(√

4µ−λ 2

2 η
)
+ c2 sin

(√
4µ−λ 2

2 η
)


+
C5k2

m2

cn(θ ,r)dn(θ ,r)
sn(θ ,r)

,

ω(x,y, t)

= c0(t)+
C7m2

k2

(
−R+

√
∆

2P
tanh

(√
∆

2
ξ

))

+
C6m2

k2

(
−λ

2
+

√
4µ −λ 2

2

×
−c1 sin

(√
4µ−λ 2

2 η
)
+ c2 cos

(√
4µ−λ 2

2 η
)

c1 cos
(√

4µ−λ 2

2 η
)
+ c2 sin

(√
4µ−λ 2

2 η
)


+
C5m2

k2

cn(θ ,r)dn(θ ,r)
sn(θ ,r)

.

2) 如果 ∆ > 0, λ 2 = 4µ , 而且 A = r2, B =

−(1+ r2), C = 1,则有

u(x,y, t) =C4 +C7

(
−R+

√
∆

2P
tanh

(√
∆

2
ξ

))

+C6

(
−λ

2
+

c2

c1η + c2

)
+C5

cn(θ ,r)dn(θ ,r)
sn(θ ,r)

,

v(x,y, t) = b0(t)+
C7k2

m2

(
−R+

√
∆

2P
tanh

(√
∆

2
ξ

))

+
C6k2

m2

(
−λ

2
+

c2

c1η + c2

)
+

C5k2

m2

cn(θ ,r)dn(θ ,r)
sn(θ ,r)

,

ω(x,y, t) = c0(t)+
C7m2

k2

(
−R+

√
∆

2P
tanh

(√
∆

2
ξ

))

+
C6m2

k2

(
−λ

2
+

c2

c1η + c2

)
+

C5m2

k2

cn(θ ,r)dn(θ ,r)
sn(θ ,r)

.

3) 如果 ∆ < 0, λ 2 = 4µ , 而且 A = r2, B =

−(1+ r2), C = 1,则有

u(x,y, t)

=C4 +C7

(
−R−

√
−∆

2P
tan
(√

−∆
2

ξ
))

+C6

(
−λ

2
+

c2

c1 + c2η

)
+C5

cn(θ ,r)dn(θ ,r)
sn(θ ,r)

,

v(x,y, t)

= b0(t)+
C7k2

m2

(
−R−

√
−∆

2P
tan
(√

−∆
2

ξ
))

+
C6k2

m2

(
−λ

2
+

c2

c1 + c2η

)
+

C5k2

m2

cn(θ ,r)dn(θ ,r)
sn(θ ,r)

,

ω(x,y, t)

= c0(t)+
C7m2

k2

(
−R−

√
−∆

2P
tanh

(√
−∆
2

ξ
))

+
C6m2

k2

(
−λ

2
+

c2

c1 + c2η

)
+

C5m2

k2

cn(θ ,r)dn(θ ,r)
sn(θ ,r)

,

其中
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ξ = k1x+
k1m2

k2
y+

∫ (
−

k1(3k(t)k3
2c0(t)+m2

2s(t)k2 +q(t)m3
2 −3m2

2k(t)k2b0(t))
m2

2k2

)
dt +C3,

η = k2x+m2y+
∫ (

−
3k(t)k3

2c0(t)+m2
2s(t)k2 +q(t)m3

2 −3m2
2k(t)k2b0(t)

m2
2

)
dt +C2,

θ = k3x+
k3m2

k2
y+

∫ (
−

k3(3k(t)k3
2c0(t)+m2

2s(t)k2 +q(t)m3
2 −3m2

2k(t)k2b0(t))
m2

2k2

)
dt +C1,

其中 C1, C2, C3, C4, C5, C6, C7, C8 是任意常数. 根据
表 1、表 2和表 3的解,还能得到更多的三孤子新
解,包含椭圆函数,双曲函数,三角函数和有理函数
混合的新相互作用解. 这里就不一一列举.

4 结 论

本文给出了一种求非线性发展方程的三孤子

解的一种方法. 该方法是对辅助方程方法的扩展和
(G′/G)展开法的改进. 利用这种方法,成功地获得

了变系数非线性 (2+1)维 Nizhnik-Novikov-Vesselov

方程 (1)的三孤子新解. 这些相互作用解混合了有

理函数、三角函数、双曲函数以及雅克比椭圆函

数. 这些解要比之前文献 [15—17] 中的解更丰富.

这些结果对于研究解的物理意义有一定参考价值.

本文利用三个不同的辅助方程构造了非线性发展

方程的解,该方法在研究非线性发展方程方面更具

有有效性和实用性. 本文提到的非线性发展方程以

及求出的解的物理意义有待于进一步探讨.
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Abstract
In this paper, in order to obtain new solutions to nonlinear evolution equations, the auxiliary equation method and (G′/G)-

expansion method are studied and extended. By using the method, many new exact solutions of the nonlinear (2+1)-dimensional
Nizhnik-Novikov-Vesselov equations with variable coefficients are obtained. The interaction new solutions include Jacobi elliptic
function, hyperbolic function, triangular function and rational function.
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