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基于广义线性模型的针刺足三里脊髓
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神经系统以时空编码形式刻画外部刺激信息,针刺作为对穴位的机械作用可以等效为对神经系统的一种外部

刺激. 为了揭示神经系统如何表达和传递针刺作用,本文设计了不同频率的针刺动物实验,即在针刺大鼠足三里穴

位时获取脊髓背根神经节电信号.首先,经过数据预处理获得单神经元动作电位序列并转化为点过程序列. 其次,应

用广义线性模型 (GLM)编码针刺作用,产生模拟的神经放电序列. 另外,在模型基础上应用贝叶斯解码,根据神经放

电序列重构针刺随时间变化的位移波形. 最后,基于时间重标度理论应用分位数分位数 (Q-Q)图方法检验编码模型

与点过程数据的一致性. 结果表明, GLM能够模拟针刺神经编码,并正确解码针刺信息.本文为针刺研究提供了新

的视角,对于构建神经系统与机器接口以改善针刺的临床研究具有潜在意义.
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1 引 言

针灸是中国传统医学的重要组成部分,其疗效

已经得到了现代科学研究的支持 [1−3]. 针灸能够诱

发神经系统、神经递质以及内生物质的响应 [4−7],

并具有潜在的分子效应机理 [8,9]. 在人类受试者中,

不同振幅和频率的针刺能够调节脑血流速度、血

压和心率 [10]. 足三里是临床研究中最常用的针灸

穴位之一 [11,12]. 针刺足三里对神经支配的内脏功

能活动的调节作用仅通过脊髓反射实现 [13]. 因此,

研究针刺足三里穴的作用机理可以排除高级中枢

的影响 [13]. 针刺足三里可以诱发脊髓背根神经节

的电活动,产生动作电位. 在脊髓中,针刺电信号的

传入通路已经得到辨识 [14]. 针刺是一种机械刺激,

当足三里处的机械刺激感受器对针刺做出响应时,

动作电位发端于假单极神经元外周分支的尖端,再

通过轴突将动作电位传导到脊髓背角中枢分支,从

而支配脊髓中二阶神经元的活动 [15].

目前,用于刻画针刺神经电信号的方法有非线

性分析方法 [13,16]、复杂网络映射方法等 [17],用于

分类针刺手法的方法有朴素贝叶斯解码算法 [18].

为了模拟针刺电信号的传递路径,具有可塑性的延

迟前馈网络模型被建立 [19]. 对于高级神经中枢,基

于脑电图 (EEG)的研究表明针刺可以诱发脑功能

状态的变化 [20−22]. 另外,大量文献根据神经元及其

网络模型研究了信号的编码以及传递机理 [23−29].

然而, 神经系统如何编码针刺信息尚未得到解答.

因此,本文提出应用 GLM建立针刺编码模型,根据

观测的神经活动对针刺位移波形进行贝叶斯解码.

神经元放电活动与刺激或行为之间的关系是

神经生理学研究的焦点 [30]. 本文中假单极神经元

将外部刺激作为输入, 产生放电序列响应. 描述神

经元表达刺激或行为信息的方式为编码问题.而从

神经放电序列重构刺激或行为的编码对偶问题为

解码问题.通过观测的神经活动能够重构刺激信号
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说明外部世界的特定信息可以通过特定的神经放

电序列进行表达 [31].

由于来自单神经元的放电具有统一的标准波

形,所以神经元对于外部刺激的表达是通过放电事

件的频率和时刻实现的. 另外,在不同组实验,神经

元对相同刺激响应的放电序列也不相同,具有较大

变化. 以上两个基本方面决定了神经放电序列能

够通过点过程理论进行分析 [32]. 时间点过程是在

连续时间内发生的二进制事件的随机时间序列 [32].

在此情况下,本文用时间点过程代表放电事件的时

间并表达特定放电时间序列的概率分布.

基于点过程理论,本文引入 GLM方法以及基

于模型的贝叶斯解码. 应用 GLM建立针刺作用编

码模型,即建立针刺刺激位移波形与脊髓背根神经

放电活动之间的关系. 通过点过程估计框架, 应用

贝叶斯解码算法根据神经点过程放电序列重构不

同频率的针刺波形信号.最后,应用 Q-Q图方法检
验针刺编码模型与神经点过程放电序列数据的拟

合优度.

2 实验数据的获取及预处理

2.1 针刺实验设计

整体实验设计框架以及编码解码过程如

图 1 所示. 实验选用成年健康的雄性 Sprague-
Dawley(SD) 大鼠, 体重在 190—210 g, 深度药物麻
醉后 (20%氨基甲酸乙酯 (1.5 g/kg)), 以 L1 腰椎为

中心手术充分暴露腰髓. 分离 L4 脊髓背根神经束

并在近心端剪断,分离出感受野位于足三里穴区的
神经细束,将细束搭放在一对双极铂金丝记录电极
上,用生理电信息记录仪 MP150 (BIOPAC)进行电
信息记录.

图 1 实验流程及针刺编码解码过程

当在针刺分析仪上进行针刺操作时,针刺针的
深度随时间的变化波形能够被记录 [33], 如图 2 所
示. 波形幅值大约为 2 mm. 本文在实验鼠足三里
进行提插法针刺操作,提插幅度约 2 mm,频率分别
为 50 次/min 和 100 次/min. 两种频率针刺手法施
针顺序随机,每次手法作用 2 min,两次手法间留针,
留针时间为 5 min, 以保证消除前一手法针刺操作

的遗留效应.所设计的针刺操作时间依据针灸临床
应用设定. 为了保证神经元对针刺编码的精度,整
个实验过程中针刺针都停留在皮肤内.采样频率为
40 kHz, 在分析中每种手法截取 60 s. 考虑到神经
元对于针刺刺激的适应性, 将前 10 次提插针刺操
作时记录的数据去除. 在实验过程中, 对每次提插
法操作的开始时刻进行同步记录.
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图 2 针刺针随时间变化的位移波形示意图

2.2 实验数据预处理

针刺足三里,在脊髓背根神经节记录到的是连

续的宽频带数据. 因此, 需要对动作电位进行检测

和分类, 来获得单神经元放电序列 [34]. 首先, 对原

始数据进行 300到 3000 Hz的带通滤波.其次,设定

检测动作电位的阈值为

Thr = 3σ ,σ = median
{

|x|
0.6745

}
, (1)

其中 x为带通滤波后的信号, σ 为噪声的标准差估
计.应用滤波信号的中位数代替标准差的目的是削
弱动作电位的干扰 [34]. 带通滤波后的放电时间序
列如图 3(a)所示.
检测到动作电位之后,应用小波变换提取动作

电位形状特征, 将所有特征作为聚类算法的输入.
本文应用超顺磁聚类 (SPC) 算法将具有相似形状
的动作电位归为一类 [34]. 在动作电位归类之后,所
有的动作电位根据形状特征被分为三类,如图 3(b)
所示. 依据动作电位形状的小波系数, 不同类型的
动作电位分布在不同的区域.图 3(c)所示为两个小
波系数组成的平面,三个分离的区域分布在其上.

图 3 脊髓背根神经节电信号放电类选 (a)经过 300到 3000 Hz宽频带滤波后的信号; (b)不同类神经元的放电波形; (c)不同放电波
形对应的小波系数分布

当针刺针在皮肤中保持静止时,除了偶然的自

发放电, 观测不到明显的放电行为. 每次提插针刺

操作都能够诱发明显的放电簇,这些放电簇中包含

着针刺刺激的主要信息. 因此, 这类明显的放电序

列簇被转化为点过程进行编码解码研究.

3 神经放电模型与神经解码

3.1 条件强度函数

点过程定义为连续时间上发生的离散事件

的集合. 对于神经放电序列, 点过程是各个动作

电位发生时刻的集合 [35]. 在神经生理学实验中,

假设在观测区间 (0,T ] 内记录单神经元放电活

动. 令 0 < u1 < · · · < u j < · · · < uJ 6 T 是神经元

的 J 个放电时刻, 即点过程观测. 对于 t ∈ (0,T ],

定义 N(t) 为时间区间 (0, t] 内记录的动作电位

个数. 于是, 放电时刻的采样路径定义为事件

N0,t = {0< u1 < u2, · · · ,u j 6 t∩N(t)= j},其中 j < J.

当放电发生时, N0,t 增加 1, 否则 N0,t 为常数. 采样

路径记录了 (0, t]时间内动作电位发生的位置和数

量,因此它包含放电时刻的所有信息 [36].

随机神经点过程可以完全由条件强度函数刻

画,定义为

λ (t|Ht) = lim
∆→0

Pr(N(t +∆)−N(t) = 1|Ht)

∆
, (2)
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其中 Ht 是时刻 t 与其之前时刻的神经元放电历史
及其他相关协变量. 条件强度函数是具有历史依
赖性的频率函数,是泊松过程频率函数一般化的定
义 [32,35]. 当动作电位分布是非均匀泊松过程时,条
件强度函数可写为 λ (t|Ht) = λ (t)[30,36]. 因此,在放
电序列具有历史依赖性的条件下, λ (t|Ht)∆ 能够近
似表达时间区间 [t, t +∆)中神经元的放电概率.
根据条件强度函数 λ (t|Ht),区间 (0,T ]内的神

经放电序列 {ui}n
i=1 的联合概率分布表示为

p({ti}n
i=1) =

[ n

∏
i=1

λ (ui|H(ui))

]
× exp

(
−

∫ T

0
λ (u|H(u))du

)
. (3)

很明显方程 (3)的右边第一项可以看成与在实
际放电时刻观测到的动作电位相关的概率密度,第
二项为在区间内没有观测到任何其他放电的概率.
条件强度函数 λ (t|Ht)简洁的表征了放电时间序列

的联合概率密度,并完全刻画了模拟神经放电活动
的随机结构 [30].

3.2 神经点过程模型和 GLM框架

单神经元的放电活动同时受到多种因素影响.
研究神经活动经常涉及 3 类不同的协变量. 首先,
神经放电活动经常与外部生物学的和行为学的协

变量有关,例如感觉刺激和行为的或特定的运动输
出 [35]. 神经解码问题即是根据观测的神经放电活
动推断这些外部协变量. 其次, 神经元现在的放电
活动也与它自身的放电历史有关 [37]. 最后,现代技

术的进步允许同步记录多神经元放电活动,并且表

明特定神经元的放电活动与神经元集群现在的和

过去的放电活动有关 [38].

本文应用的条件强度函数模型可以同时分析

外部协变量、内部放电历史和并发的神经集群放

电活动.因此,条件强度函数表示为

λ (t|Ht) = f
(

t,x[0,t],N[0,t),{Nc
[0,t)}

C
c=1

)
, (4)

其中 x[0,t] 代表现在时刻及其以前时刻的外部协

变量集合的值, N[0,t) 代表神经元自身的放电历史,{
Nc
[0,t)

}C

c=1
代表其他 C个神经元的放电历史. 本文

引入的 GLM 是有名的线性非线性泊松级联模型

(LNP)的一般化,描述了神经集群放电序列对刺激

的编码 [38]. 在此模型中,各个神经元的输入需要经

过线性滤波, 放电后滤波和耦合滤波集合的作用.

其中线性滤波为刺激滤波或感受野,放电后滤波能

够捕捉放电序列历史依赖性 (如不应期,簇放电和

适应性),偶和滤波集合能够捕捉对其它神经元放电

的依赖性. 对于各个神经元, 滤波后的各值之和经

过指数作用即得到瞬时放电率.图 4显示了在单神

经元条件下只具有线性滤波和放电后滤波的 GLM.

本文根据状态过程模拟 GLM中条件强度函数

的简单形式 [36]

λ (k∆) = exp(µ +βxk), (5)

其中, µ 是背景放电率的对数. β 是增益参数,控制

潜在过程调节神经元放电率的程度.方程 (5)中仅

包含线性滤波器成分.

图 4 广义线性模型示意图

3.3 评估模型拟合优度

根据统计模型推断特定神经系统之前,对模型

和放电序列数据的一致性进行测量是必要的,即评

估拟合优度 [36]. 时间重标度是概率理论中评估拟

合优度的著名方法,它为测量点过程和随机结构概

率模型的一致性提供了直接的方法 [36,39]. 经过时

间重标度的峰峰间期计算如下:

τ j =
∫ u j

u j−1

λ (u|θ̂)du, (6)
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其中, u js是神经元的放电时刻, λ (t|θ)是方程 (6)中
最大似然估计 θ̂ 条件下点过程 u js ( j = 1,2, · · · ,J)
的条件强度函数. 依据时间重标度理论, τ js是独立
的指数随机变量,并具有单位频率.将 τ js进行进一
步转换为

z j = 1− exp(τ j), (7)

z js是区间 (0,1)上独立的均匀分布随机变量. 因此,
Q-Q图被构建用来测量均匀概率密度和 z js之间的
一致性 [36,39]. 首先,将 z js从小到大排序,得到排序
序列 z̃ js. 然后定义均匀分布密度的分位点数如下:

b j =
j−1/2

J
, j = 1,2, · · · ,J. (8)

由于从 u js到 z js再到 z̃ js的转换都是一一对应的,
因此, z̃ js的概率密度和 (0,1)上均匀分布概率密度
的紧密一致性意味着统计模型和点过程测度的紧

密一致性. 如果点集 (b j, z̃ j)s位于 45◦ 线上,则点过
程模型和实验数据之间具有精确的一致性. 本文
将逐点的构建置信带来测量偏离 45◦ 线的程度.如
果 τ j 是均值为 1的独立指数随机变量并且 z j 是区

间 (0,1)上的均匀分布,那么各个 z̃ j 有参数为 k和
n− k+1的 Beta概率密度,定义为

f (z|k,n− k+1)

=
n!

(n− k)!(k−1)!
zk−1(1− z)n−k, (9)

其中 0 < z < 1[39]. 通过寻找与方程 (9) 相关的累
计分布的第 2.5 个和第 97.5 个分位数, 可以设置
95%的置信带.对于中等程度或较大的放电序列数
据量,高斯近似到二项概率分布给出 95%置信带的
一个合理近似,即 z j ±2.575[z j(1− z j)/n]1/2[39].

3.4 基于模型的神经解码分析

在神经放电模型的构建过程中, 相关协变量
x(t)与感觉刺激、生理状态或运动行为有关,并被
用于描述神经放电序列 {ui} 的统计结构. 神经解
码是编码模型构建的逆问题,即从观测的放电活动
{ui}推断外部协变量 x(t)集合.点过程的离散时间
表达能够促进解码算法的构建. 为了获得点过程,
选择足够大的整数 K 并且将观测区间分为 K 个子
区间 (tk−1, tk]Kk=1,长度为 ∆ = T K−1.于是,连续时间
变量的离散时间形式可记为 Nk = N(tk), Nk = N(tk)
和 Hk = H(tk). 对于放电神经元, 各区间中两个相
邻点之间的差为 ∆Nk = Nk −Nk−1. 给定该区间中的
放电数,差 ∆Nk 定义了一个随机变量. 如果 K 值足

够大, 则每个区间中将不会多于一个放电事件. 集
合 {∆Nk}K

k=1 是典型的 0 和 1 序列, 用来表达离散

时间序列上的放电序列数据. ∆N1:k = {∆Ni}k
i=1 代

表时刻 tk 及其之前时刻观测到的所有放电的集合.
因此,所有相关模型成分,例如系统状态和观测值,

仅定义在这些特定的时刻上. 方便起见, x(tk)被记

为 xk,将这些时刻上依赖于历史的单神经元条件强

度 λ (tk|Hk)记为 λk. 基于离散时间框架,通过非线
性递归滤波和固定区间平滑算法可以构建贝叶斯

解码过程.

若要估计状态 xk,需应用过去所有观测集合条

件下状态的后验密度 p(xk|∆N1:k),并通过联合状态

和观测模型对后验密度进行递归计算.本文假设可
将随机状态模拟为动态系统,它的一阶自回归状态

演化模型为

xk = ρxk−1 + εk, (10)

其中, ρ 是状态矩阵, εk 是均值为 0方差为 σ2
ε 的高

斯随机变量. 本文应用最大似然方法拟合参数 ρ 和
σ2

ε . 已知前一状态值 p(xk+1|xk) = N(ρxk,σ2
ε ),状态

方程定义了状态在各个离散时间点上的概率.

为了获得观测模型, 本文将区间 (tk−1, tk]中观

测到单个放电的概率的条件强度函数近似为 [36]

p(yk|xk,Hk)

=exp(yk log(λk∆)−λk∆)+o(∆). (11)

注意到即使放电过程不是泊松分布, 取决于阶数

o(∆),这个放电分布也可等价于参数为 λk∆ 的泊松
分布.

已知目前为止所有的观测,通过如下贝叶斯法
则能够获得状态的后验密度

p(xk|∆N1:k) =
p(∆N1:k,xk)

Pr(∆N1:k)
=

p(∆Nk,∆N1:k−1,xk)

Pr(∆N1:k)

=
Pr(∆Nk,∆N1:k−1,xk)p(∆N1:k−1,xk)

Pr(∆N1:k)

=
Pr(∆Nk,∆N1:k−1,xk)p(xk|∆N1:k−1)

Pr(∆N1:k|∆N1:k−1)
.

(12)

方程 (12)最后等式中分子的第一项是观测模型,第

二项是由 Chapman-Kolmogorov方程定义的一阶预
测密度

p(xk|∆N1:k−1)

=
∫

p(xk|xk−1)p(xk−1|∆N1:k−1)dxk−1. (13)
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方程 (13)包含两个成分: 状态模型 p(xk|xk−1)和来

自最后一步迭代的后验密度 p(xk−1|∆N1:k−1). 因此,
方程 (12)和 (13)给出了一个状态空间模型滤波问
题完备的递归解. 如果状态和观测模型都是线性高
斯的,卡尔曼滤波可以被用来解该状态空间估计问
题 [40]. 然而,一般来说方程 (11)是非线性的和非高
斯的,因此需要根据高斯近似代替精确的滤波过程
来构建如下的近似滤波.
令 xk|k−1 和 σ2

k|k−1 是在 k 时刻一阶预测密度

p(xk|∆N1:k−1)近似的均值和方差, xk|k 和 σ2
k|k 是在 k

时刻后验密度 p(xk|∆N1:k)的均值和方差. 下面的方
程为递归非线性滤波算法,即根据观测的和先前的
估计量,应用方程 (5)作为条件强度,估计后验均值
xk|k 和后验方差 σ2

k|k. 该算法通过卡尔曼滤波的最
大后验概率推导获得 [41]. 通过递归计算得到后验
概率密度 p(xk|Hk)的高斯近似. 高斯近似需要递归
地计算后验众数 xk|k 和方差 σ2

k|k, 并将它们作为后
验概率密度对数的二阶导数的逆否 [42]. 非线性递
归算法是:
观测方程

p(dN(k∆)|xk) =[exp(µ +βxk)∆ ]dN(k∆)

× exp(−exp(µ +βxk)∆). (14)

一阶预测

xk|k−1 = ρxk−1|k−1 +αIk. (15)

一阶预测方差

σ2
k|k−1 = ρσ2

k−1|k−1 +σ2
ε . (16)

后验众数

xk|k =xk|k−1 +σ2
k|k−1β [dN(k∆)

− exp(µ +βxk|k)∆ ]. (17)

后验方差

σ2
k|k = [(σ2

k|k−1)
−1 +β exp(µ +βxk|k)∆ ]−1, (18)

其中 k = 1,2, · · · ,K. 初始条件是 x0 和 σ2
0|0 =

σ2
ε (1−ρ2)−1. 由于方程 (17) 等式两边都含有 xk|k

项,所以算法是非线性的. 一般来讲,应用迭代过程,
如牛顿法, 可以在各个时间步获得后验均值估计,
其中迭代起始点为第一步的预测估计值.
已知过去和未来的观测值,平滑问题是在给定

时刻对状态向量分布进行评估. 本文应用固定区间
平滑算法,在观测区间 [0, tk]上记录神经放电活动,
并在该区间上计算所有时刻 t 的 p(xt |∆N1:k). 根据

贝叶斯法则和 Chapman-Kolmogorov 方程, 平滑分
布表达为 [43]

p(xk|∆N1:k)

=
∫

p(xk,xk+1|∆N1:K)dxk+1

=
∫

p(xk+1|∆N1:K)p(xk|xk+1,∆N1:K)dxk+1

=p(xk|∆N1:k)

×
∫ p(xk+1|∆N1:K)p(xk+1|xk)

p(xk+1|∆N1:k)
dxk+1, (19)

其中 p(xk|∆N1:k) 和 p(xk+1|∆N1:k) 分布相当于方程

(12)中的后验密度和方程 (13)中的一阶预测密度.
因此, 在本框架中, 点过程平滑的第一步是进行点
过程滤波. 在此情况下, 上面建立的高斯滤波近似
展现出更多的优点,即后验滤波的高斯近似导致平
滑分布也具有高斯密度.令 xk|K 和 σ2

k|K 是时刻 tk平

滑分布高斯近似的均值和协方差. 相应于方程 (19),
递归平滑方程为

xk|K = xk|k +Ak(xk+1|K − xk+1|k), (20)

σ2
k|K = σ2

k|k +A2
k(σ

2
k+1|K −σ2

k+1|k), (21)

和

Ak = ρσ 2
k|k(σ

2
k+1|k)

−1, (22)

其中, k = K − 1, · · · ,1. 通过后向递归获得平滑分
布的均值和方差, 递归起始点为初始条件 xK|K 和

σ2
K|K . 其中 xK|K 和 σ2

K|K 是点过程滤波的最后一步.
每次迭代从起始点逐步返回,最终到达 x1|K 和 σ2

1|K .

4 结 果

本节将阐述针刺电信号的 GLM框架和神经解
码问题.脊髓背根神经节对针刺刺激的放电响应具
有选择性. 通过观测的脊髓背根神经节放电活动能
够对针刺波形进行重构. 取神经元放电的条件强度
函数为

λ (xk) = exp(µ +β · xk), (23)

其中, µ ∈ R1 为基线放电率, β ∈ R1 是神经元对于

针刺的响应强度.在初始阶段假单极神经元负责针
刺诱发电信号的产生和传导,假设它不依赖于自身
的放电历史和其他神经元的放电. 因此, 状态活动
中包含非均匀的泊松过程. 观测区间被均匀的分为
大小为 ∆ 的小区间. 状态演化方程为

xk = ρxk−1 + εk, (24)
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其中, ρ 是相关系数, εk 是均值为 0和方差为 σ2
ε 的

高斯随机变量.

4.1 仿真研究

目前为止,在神经生理学实验中仅有针刺刺激
时刻能够被定量的记录. 当在实验鼠上进行针刺
作用时无法记录针刺深度变化波形. 针刺波形只
能通过在针刺分析仪上进行针刺操作时才能被记

录 [39]. 本文依据针刺刺激时刻对不同频率的针刺
位移波形进行人为的模拟,如图 5中蓝色实线所示.
通过方程 (23)和 (24)对针刺诱发脊髓背根神经节
放电进行模拟. 模拟的时间区间为 T = 10 s. 其中,
人为模拟的针刺位移波形作为方程 (24)中的状态
演化. 方程 (23)中条件强度函数的参数定义为背景
放电率 µ = −4的对数,增益系数为 β = 1. 应用时
间重标度理论模拟神经放电序列 [39], 状态方程每
∆ = 1 ms更新一次.

表 1 根据模拟的针刺信号估计的参数

参数 µ β

真实值 −4.500 1.000

估计值 −4.484 0.936

图 5 模拟的针刺放电序列 (横坐标上的竖线),用来产生放电
序列的真实位移叔形状态 (蓝色实线)和估计的位移波形状态
(红色虚线)

应用上一节描述的贝叶斯解码算法, 将方程
(23)和 (24)表示的模型同步的拟合到人工生成的
神经放电序列. 估计出的参数与用来产生模拟神
经放电序列数据的真实值是一致的, 如表 1 所示.
根据最大似然估计得到的状态模型参数分别为

ρ = 0.997和 σ2
ε = 0.01.

图 5 展示了贝叶斯解码算法估计的状态过程
片段. 总体来讲, 针刺波形解码捕捉到主要的波动
现象.接下来,应用 Q-Q图拟合优度检验方法来评

估模型拟合数据的程度.如图 6所示,主对角线 (黑
色实线)显示的是模型和放电序列数据精确的一致
性, 两条副对角线 (黑色虚线) 代表 95%的置信区
间 [39]. 红色实线代表模型对数据拟合的精确度.虽
然部分线段稍稍偏离 95%的置信区间,但依然具有
较高的置信度,说明模型能够较好的拟合数据.

图 6 模型估计的 Q-Q图,对角线 (黑色实线)代表模型和放电
数据精确的一致性,副对角线 (黑色实线)代表 95%的置信区间

4.2 重构针刺位移波形

本节将贝叶斯解码算法应用于针刺足三里脊

髓背根神经节记录的数据. 首先, 根据记录的针刺
刺激时刻模拟两种不同频率的提插法针刺位移波

形, 如图 7 蓝色实线所示. 数据长度为 T = 60 s.
放电序列的分辨率为 1 ms, 状态方程每毫秒更
新一次.

表 2 根据针刺电信号估计的参数

XXXXXXXXX针刺频率
参数 µ β ρ σ 2

ε

50次/min −3.593 0.223 0.995 0.010

100次/min −3.546 0.236 0.992 0.032

与模拟信号的分析相似,根据神经放电序列应
用贝叶斯解码算法对针刺位移波形进行重构. 首
先, 通过最大期望算法估计出方程中的参数, 如表
2所示. 其次,根据点过程神经放电序列 (横坐标上
的竖线)对针刺位移波形进行重构. 图 7显示的是
两种不同频率波形估计的片段,红色虚线代表估计
的状态, 能够正确拟合虚构状态. 解码的针刺波形
捕捉到主要的波动现象,显示了不同频率针刺操作
的基本特征. 图 8 显示的是用来评价拟合优度的
Q-Q 图. 红线大部分位于或接近于 95%的置信区
间,说明拟合的模型与真实放电序列数据之间具有
一致性.
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图 7 实验记录的针刺放电序列 (横坐标上的竖线),虚构的针刺位移波形状态 (蓝色实线)和估计的位移波形状态 (红色虚线) (a)提插
法针刺 50次/min; (b)提插法针刺 100次/min

图 8 模型估计的 Q-Q图 (红色实线),对角线 (黑色实线)代表模型和放电数据精确的一致性,副对角线 (黑色虚线)代表 95%的置信区
间 (a)提插法针刺 50次/min; (b)提插法针刺 100次/min

5 结 论

针刺足三里穴在脊髓背根处产生神经电活动,

针刺手法不同,产生的动作电位序列也不同.另外,

目前的针刺实验研究表明不同手法和频率的针刺

作用是一种机械刺激信息.脊髓背根神经节分布在

足三里穴区的感受器对不同针刺刺激具有不同形

式的编码. 因此, 针刺动力学感受野的研究是理解

神经系统反应针刺刺激信息的基础.

为了揭示神经系统感受野对针刺作用的编码

方式,本文引入了基于点过程的 GLM,用来模拟针

刺足三里脊髓背根神经放电活动,构建不同频率针

刺与相应的神经点过程放电序列之间的关系.并根

据时间重标度理论应用 Q-Q图方法检验了模型的
拟合优度.在模型基础上,应用贝叶斯解码算法,根
据实验记录的脊髓背根神经放电序列,对不同频率
针刺深度波形进行了重构. 研究结果表明点过程
GLM 框架使针刺神经放电活动建模得以实现, 并
具有良好的拟合优度.通过解码算法正确的估计出
针刺位移波形,从而为辨识不同类型和频率的手工
针刺提供了可视化特征.
因此, 通过建立针刺电信息编码解码模型, 本

文从一个新的角度进一步理解了针刺和不同针刺

手法的特征. 针刺电信息的定量模型分析将使手工
针刺更加标准.基于 GLM的针刺电信息编码解码
研究将有助于构建神经系统与机器之间的接口.
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Abstract
Neural system can characterize the information evoked in external stimulations by spatiotemporal encoding. Acupunctureas, as

a mechanical actionis equivalent to an external stimulus to the neural system. In order to decipher how neural systems represent and
transmit acupuncture information, experiments are designed such that different frequencies of manual acupuncture (MA) manipulations
can be given to ’Zusanli’ point of an experimental rat, and the induced electrical signals in spinal dorsal root ganglion are detected
and recorded. First, the spike trains are obtained by data preprocessing and transformed into point process trains. Then a generalized
linear model is introduced to encode the acupuncture information and produce the simulated neural spike train. In addition, a Bayesian
decoding algorithm is used to reconstruct the displacement oscillograms of the acupuncture needle from the neural point process spike
train. Finally, the quantile-quantile (Q-Q) plot based on the time-rescaling theorem is used to evaluate the agreement between the
encoding model and the point process data. Results prove to be valid based on statistical analysis. These studies have offered new
insights into neural processing underlying acupuncture and have implementations for constructing the interface between neural systems
and machines and improving the clinical study.
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