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概率假设密度滤波的物理空间意义∗
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为了深入理解概率假设密度滤波, 本文在Ozgur Erdinc对随机集的物理空间假设的基础上, 采用Bayes
公式和全概率公式对概率假设密度滤波的迭代过程进行了推导. 为有效改善概率假设密度滤波的目标漏检问
题提供了理论基础.
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1 引 言

在多目标环境中, 由于目标运动、出现、消失及
衍生等过程的存在, 目标的状态和数目都是随时
间变化的. 此外, 由漏检、虚警及量测误差等问题
带来的量测信息的不确定性也给目标跟踪带来很

大困难. 传统的基于单目标跟踪的滤波算法 (如卡
尔曼滤波及其扩展算法 [1−3]、粒子滤波及其扩展算

法 [4−6]等)已不再适用. 处理多目标跟踪问题的方
法主要有联合概率数据关联及其改进算法 [7]、多假

设跟踪及其改进算法 [8] 以及其他智能算法 [9]等,
但是这些算法需要对量测与目标进行数据关联或

建立映射关系, 计算量庞大. 而由Mahler[10]提出

的随机有限集理论及其衍生的随机集算法由于不

需要进行复杂的数据关联而受到高度重视. 概率假
设密度 (PHD)滤波采用多目标随机集概率分布的
一阶矩 (即PHD)进行迭代运算, 将复杂的多目标
状态空间问题转换为单目标状态空间问题. 它有效
避免了数据关联问题, 在保证跟踪精度的基础上,
极大地提高了算法实时性.

由于PHD滤波在迭代过程中存在集积分运算,
计算上难以实现, 所以Vo等先后提出了粒子PHD
滤波方法和高斯混合PHD滤波方法, 解决了算法

的实现问题. 随后, 人们根据不同的问题研究了
PHD 滤波的各种改进算法, 但是这些研究大都集
中在算法的应用问题上, 对PHD滤波算法本身进
行研究的相关文献较少 [11−15]. 为了便于人们理解,
Erdinc等 [16,17]在 2006年和 2009年两次对PHD滤
波的物理空间意义进行了解释, 但是其推导过程仍
然存在一些不当之处. 为此, 本文在Erdinc的基础
上对PHD滤波进行了更详细的推导, 对其不当之
处进行了修正, 对推导过程中的假设条件进行了
说明.

2 随机集理论基础

在多目标跟踪系统中, 随机集是指集合中每
个目标的状态矢量 (即集合元素)和目标数目 (即集
合维数)均在变化的集合. 令多目标状态随机集表
示为

Xk = {xk,1,xk,2, · · · ,xk,Nk
} ∈ F (χ),

其中, xk,i表示 k时刻第 i个目标的状态矢量; Nk

表示k时刻状态随机集中的目标数目; 多目标观测
随机集表示为

Zk = {zk,1, zk,2, · · · , zk,Mk
} ∈ F (ψ),
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其中, zk,j表示k时刻第 j个目标的观测矢量, 考虑
到虚警情况, zk,j可能是来自杂波的观测; Mk表示

k时刻观测到的目标数目. F (χ)和F (ψ)分别表示

目标状态空间χ和观测空间ψ上所有有限子集的

集合.
若已知k − 1时刻的目标状态随机集为Xk−1,

则k时刻的目标状态随机集为

Xk = Sk|k−1(x)
∪

Bk|k−1(x)
∪

Γk, (1)

其中, Sk|k−1(x)表示 k − 1时刻的目标xk−1 ∈
Xk−1到 k时刻仍然存活的目标状态随机集, 存
活概率为PrS(x); Bk|k−1(x)表示 k时刻由目标

xk−1 ∈ Xk−1衍生出的目标状态随机集; Γk表

示k时刻新生的目标状态随机集.
考虑虚警情况下, k时刻目标的观测随机集可

表示为

Zk = Kk

∪
Θk(x), (2)

其中, Kk表示杂波观测随机集, 杂波点概率密度为
c(z); Θk(x)表示源于真实目标的观测随机集, 检
测概率为PrD(x).

3 PHD的物理空间意义

根据点过程理论, 随机集X在物理空间上可

等价的表示为
∑

x∈X δx, δx 为中心在x的Dirac
delta函数. PHD滤波是多目标Bayes滤波的近似
算法, 它在每个时间点上传播的不是多目标后验密
度, 而是后验密度的一阶矩 (后验强度函数), 从而
降低计算复杂度. 则对于状态空间χ上的一个概率

密度函数为 f(X)的目标随机集X, 其PHD可表
示为

D(x) = E

[ ∑
ζ∈X

δζ(x)

]

=

∫ ( ∑
ζ∈X

δζ(x)

)
f(X)δX, (3)

D(x)在区域V 上的积分等于集合X在该区域内

元素个数的均值 N̂V , 即

N̂V =

∫
|X ∩ V |P (dX) =

∫
V

D(x)dx. (4)

根据Erdinc对随机集的物理空间假设,目标的
存在区域V 可由无限个互不相交、体积足够小的区

域 vi的并表示
[16,17]. 即

V =
∪
i

vi. (5)

另外, 还需假设 vi足够小以至于每个 vi内最多只能

包含一个假设为质点的目标, 目标的状态值为xi;
一个目标最多只能产生一个量测值zi. 定义指示函
数为

U(i) ,

1 (vi中目标存在)

0 (vi中目标不存在)
.

则当 |vi| → 0时, 区域V 内元素个数的均值又可表

示为

N̂V =
∑
i

P (U(i) = 1)

= lim
|vi|→0

(∑
i

P (U(i) = 1)

|vi|
|vi|

)
=

∫
V

∑
i

lim
|vi|→0

P (U(i) = 1)

|vi|
δxi

(x)dx, (6)

其中, P (U(i) = 1)表示区域 vi中目标存在的概率;
|vi|表示区域 vi的超体积. 由 (4)式和 (6)式可以看
出, 区域 vi内的PHD可定义为

D(xi) , lim
|vi|→0

P (U(i) = 1)

|vi|
. (7)

又根据 (5)式及假设条件可得, D(xi)满足

D(x) =
∑
i

D(xi)δxi
(x). (8)

而Erdinc仅直接给出了D(xi)的定义, 意义不
明确, 且没有建立D(xi)与D(x)的关系, 不易于人
们对PHD物理空间意义的理解.

4 PHD滤波的物理空间意义

4.1 预 测

由 (1)式可知, 在k− 1时刻所有小区域 vi内含

有目标情况已知的条件下, 当不考虑衍生目标时, k
时刻小区域 vi内如果含有目标, 则该目标可能来自
新生目标或k − 1时刻小区域 vj内的目标. 则k时

刻小区域 vi内的目标预测存在概率可表示为

P (Uk(i) = 1|Zk−1
1 )

= b(Uk(i) = 1) +
∑
j

p(Uk(i) = 1|xj)

× PrS(xj)P (Uk−1(j) = 1|Zk−1
1 ), (9)

其中, b(Uk(i) = 1)表示k时刻小区域 vi内产生新

目标的概率; p(Uk(i) = 1|xj)表示目标xj由小区

域 vj转移到小区域 vi内的转移概率; P (Uk−1(j) =
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1|Zk−1
1 )表示k − 1时刻小区域 vj内的目标后验存

在概率.
这里仿照 (7)式给出如下定义:

b(xi) , lim
|vi|→0

b(Uk(i) = 1)

|vi|
, (10)

f(xi|xj) , lim
|vi|→0

p(Uk(i) = 1|xj)

|vi|
, (11)

(10)和 (11)式分别表示新生目标的强度函数和目
标的状态转移概率密度. 对 (9)式两边取极限可得

lim
|vi|→0

P (Uk(i) = 1|Zk−1
1 )

|vi|

= lim
|vi|→0

b(Uk(i) = 1)

|vi|

+ lim
|vi|→0

(∑
j

p(Uk(i) = 1|xj)

|vi|
× PrS(xj)

× P (Uk−1(j) = 1|Zk−1
1 )

|vj |
|vj |

)
. (12)

把 (7), (10)和 (11)式代入 (12)式可得

Dk|k−1(xi)

= b(xi) +

∫
V

∑
j
f(xi|xj)PrS(xj)

×Dk−1|k−1(xj)δxj
(x)dx

= b(xi) +

∫
V

f(xi|x)PrS(x)

×Dk−1|k−1(x)dx. (13)

4.2 更 新

根据 (2)式, k时刻小区域 vi内被检测的目标

可能来自 vi内真实存在的目标, 也可能来自杂波.
这里首先定义:

V (i) ,

1 (vi中的目标被检测到)

0 (vi中的目标未被检测到)
.

则此时目标区域V 内被检测到的目标数目可表

示为

|Zk| =
∑
j

Uk(j)Vk(j) +Nλ, (14)

其中, Nλ表示来自杂波的观测目标数目, 这里假设
虚警数目服从均值为µλ的泊松分布. 另外, 当 |vi|
足够小时, V 内小区域的个数趋于无穷, 假设每个
小区域 vi内的目标存在情况相互独立, 则V 内的来

自真实目标的观测目标数近似服从泊松分布, 均

值为

µt ≈ lim
|vi|→0

∞∑
i=1

P (Uk(i) = 1|Zk−1
1 )PrD(xi), (15)

从而可得, V 内被检测到的目标数服从均值为
µ = µt + µλ的泊松分布.

根据Bayes公式, 在得到直到k时刻的检测目

标的情况下, 小区域 vi内目标存在的后验概率可表

示为

P (Uk(i) = 1|Zk
1 )

= P (Uk(i) = 1|Zk, |Zk| = m,Zk−1
1 )

=
f(Zk, |Zk| = m|Uk(i) = 1,Zk−1

1 )

f(Zk, |Zk| = m|Zk−1
1 )

× P (Uk(i) = 1|Zk−1
1 ), (16)

而Erdinc对此公式的推导较为烦琐.
假设观测到的目标数目与目标分布情况相互

独立, 各目标之间观测独立, 则
1) 当 |Zk| = m = 0时,

f(Zk, |Zk| = m|Uk(i) = 1,Zk−1
1 )

= f(m = 0|Uk(i) = 1, Vk(i) ̸= 1,Zk−1
1 )

× f(Vk(i) ̸= 1|Uk(i) = 1)

= f(m = 0|V − vi,Z
k−1
1 )

× f(Vk(i) ̸= 1|Uk(i) = 1)

= e−µ′
(1− PrD(xi)), (17)

f(Zk, |Zk| = m|Zk−1
1 ) = e−µ, (18)

其中

µ′ = µ′
t + µλ, (19)

µ′
t ≈ lim

|vi|→0

∞∑
j,j ̸=i

P (Uk(j) = 1|Zk−1
1 )PrD(xj).

(20)

而Erdinc在其推导过程中却忽略了小区域 vi对

整个区域V 内观测目标平均数目的影响, 缺乏严
密性.

把 (17)和 (18)式代入 (16)式, 可得

P (Uk(i) = 1|Zk
1 )

=
e−µ′

(1− PrD(xi))

e−µ
P (Uk(i) = 1|Zk−1

1 )

= eµ−µ′
(1− PrD(xi))P (Uk(i) = 1|Zk−1

1 )

≈ (1− PrD(xi))P (Uk(i) = 1|Zk−1
1 ), (21)
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其中

µ− µ′ = lim
|vi|→0

P (Uk(i) = 1|Zk−1
1 )PrD(xi)

≈ 0. (22)

2) 当 |Zk| = m ̸= 0时,

f(Zk, |Zk| = m|Zk−1
1 )

= f(Zk|Zk−1
1 )f(|Zk| = m|Zk−1

1 )

= f(Zk|Zk−1
1 )

µm e−µ

m!
. (23)

根据全概率公式

f(Zk, |Zk| = m|Uk(i) = 1,Zk−1
1 )

= f(Zk, |Zk| = m|Uk(i) = 1, Vk(i) = 1,Zk−1
1 )

× f(Vk(i) = 1|Uk(i) = 1)

+ f(Zk, |Zk| = m|Uk(i) = 1, Vk(i) ̸= 1,Zk−1
1 )

× f(Vk(i) ̸= 1|Uk(i) = 1)

= f(Zk, |Zk| = m|Uk(i) = 1, Vk(i) = 1,Zk−1
1 )

× PrD(xi)

+ f(Zk, |Zk| = m|Uk(i) = 1, Vk(i) ̸= 1,Zk−1
1 )

× (1− PrD(xi)). (24)

假设每个量测来自同一的目标的概率相等, 则 (24)
式中

f(Zk, |Zk| = m|Uk(i) = 1, Vk(i) = 1,Zk−1
1 )

=

m∑
s=1

1

m
f(zs|Uk(i) = 1, Vk(i) = 1)

× f(Zk(s
c), |Zk| = m− 1|V − vi,Z

k−1
1 )

=
m∑
s=1

1

m
f(zs|xi)f(Zk(s

c)|V − vi,Z
k−1
1 )

× f(|Zk| = m− 1|V − vi,Z
k−1
1 )

=

m∑
s=1

1

m
f(zs|xi)f(Zk(s

c)|V − vi,Z
k−1
1 )

× µ′(m−1) e−µ′

(m− 1)!
, (25)

其中, Zk(s
c)表示量测zs对量测集Zk的补集, 来

自V − vi区域的真实目标或杂波. 这里Erdin仍然
忽略了小区域 vi对整个区域V 内观测目标平均数

目的影响. 同理可得

f(Zk, |Zk| = m|Uk(i) = 1, Vk(i) ̸= 1,Zk−1
1 )

= f(Zk|Uk(i) = 1, Vk(i) ̸= 1,Zk−1
1 )

× f(|Zk| = m|Uk(i) = 1, Vk(i) ̸= 1,Zk−1
1 )

= f(Zk|V − vi,Z
k−1
1 )

µ′m e−µ′

m!
. (26)

把 (23)和 (24)式代入 (16)式, 可得

P (Uk(i) = 1|Zk
1 )

=
1

f(Zk|Zk−1
1 )

µm e−µ

m!

×
( m∑

s=1

f(zs|xi)f(Zk(s
c)|V − vi,Z

k−1
1 )

× µ′(m−1) e−µ′

m!
PrD(xi)

+ f(Zk|V − vi,Z
k−1
1 )

× µ′m e−µ′

m!
(1− PrD(xi))

)
× P (Uk(i) = 1|Zk−1

1 ). (27)

又由于

lim
|vi|→0

(V − vi) = V, (28)

所以, 当 |vi| → 0时, 把 (22)和 (28)式代入 (27)式,
可得

Dk|k(xi) = lim
|vi|→0

P (Uk(i) = 1|Zk
1 )

|vi|

= lim
|vi|→0

((
µ′

µ

)m

eµ−µ′
((

1− PrD(xi)
)

+
m∑
s=1

f(zs|xi)f(Zk(s
c)|Zk−1

1 )

µ′f(Zk|Zk−1
1 )

× PrD(xi))

)
× lim

|vi|→0

P (Uk(i) = 1|Zk−1
1 )

|vi|

=

(
(1− PrD(xi)) +

m∑
s=1

PrD(xi)

µ
f(zs|xi)

× f(Zk(s
c)|Zk−1

1 )

f(Zk|Zk−1
1 )

)
Dk|k−1(xi)

=

(
(1− PrD(xi)) +

m∑
s=1

PrD(xi)

µ

× f(zs|xi)

f(zs|Zk(sc),Zk−1
1 )

)
Dk|k−1(xi)

=

(
(1− PrD(xi)) +

m∑
s=1

PrD(xi)

µ

× f(zs|xi)

f(zs|Zk−1
1 )

)
Dk|k−1(xi), (29)
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式中, f(zs|Zk−1
1 )中的 zs可以来自目标, 也可

以来自杂波, 根据目标观测独立假设, 它等于
f(zs|Zk(s

c),Zk−1
1 ), 而Erdinc对它们的等价性进

行了推导, 但是推导过程中限定zs的来源, 不符合
全概率公式.

根据全概率公式

f(zs|Zk−1
1 )

= c(zs)P (量测来自虚警)

+
∑
i

f(zs|xi)P (量测来自xi)

= c(zs)
µλ

µλ +
∞∑
i

P (Uk(i) = 1|Zk−1
1 )PrD(xi)

+
∑
i

f(zs|xi)

× P (Uk(i) = 1|Zk−1
1 )PrD(xi)

µλ +
∞∑
i

P (Uk(i) = 1|Zk−1
1 )PrD(xi)

. (30)

当 |vi| → 0时, 把 (15)式代入 (30)式可得

lim
|vi|→0

f(zs|Zk−1
1 )

=
1

µ

(
c(zs)µλ + lim

|vi|→0

∑
i

f(zs|xi)PrD(xi)

× P (Uk(i) = 1|Zk−1
1 )

|vi|
|vi|

)
=

1

µ

(
c(zs)µλ +

∫
V

f(zs|γ)

× PrD(γ)Dk|k−1(γ)dγ
)
, (31)

式中, µ = µt + µλ. 再把 (31)式代入 (29)式可得

Dk|k(xi) = lim
|vi|→0

P (Uk(i) = 1|Zk
1 )

|vi|

=

(
(1− PrD(xi)) +

m∑
s=1

PrD(xi)f(zs|xi)

c(zs)µλ +

∫
V

f(zs|γ)PrD(γ)Dk|k−1(γ)dγ

)
Dk|k−1(xi). (32)

可以看出, (13)和 (32)式即为PHD滤波的预测方程和更新方程.

5 PHD滤波的目标漏检问题

根据 (21)式, 当没有目标被检测到, 即m = 0时, k时刻小区域 vi内的目标存在概率可表示为

P (Uk(i) = 1|Zk
1 ) ≈ (1− PrD(xi))P (Uk(i) = 1|Zk−1

1 ). (33)

而根据目标存在的物理空间意义, k时刻区域 vi内没有目标被检测到时, 有两种情况: 一是 vi内不存在目

标, 其概率可用目标预测不存在概率表示为

P (Uk(i) = 0|Zk
1 ) = 1− P (Uk(i) = 1|Zk−1

1 ). (34)

二是 vi内存在目标, 但是没有被检测到, 其概率可用目标预测存在概率和检测概率表示为

P (Uk(i) = 1, Vk(i) = 0|Zk
1 ) = (1− PrD(xi))P (Uk(i) = 1|Zk−1

1 ). (35)

从而可得此时区域 vi内的目标存在概率为

P ′(Uk(i) = 1|Zk
1 ) =

P (Uk(i) = 1, Vk(i) = 0|Zk
1 )

P (Uk(i) = 0|Zk
1 ) + P (Uk(i) = 1, Vk(i) = 0|Zk

1 )

=
(1− PrD(xi))P (Uk(i) = 1|Zk−1

1 )

(1− P (Uk(i) = 1|Zk−1
1 )) + (1− PrD(xi))P (Uk(i) = 1|Zk−1

1 )

=
(1− PrD(xi))P (Uk(i) = 1|Zk−1

1 )

1− PrD(xi)P (Uk(i) = 1|Zk−1
1 )

. (36)
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比较 (33)和 (36)式可知, P (Uk(i) = 1|Zk
1 ) 6

P ′(Uk(i) = 1|Zk
1 ), 所以当没有目标被检测到时

PHD滤波存在目标漏检问题.

6 结 论

本文在Erdinc对随机集的物理空间假设的基
础上, 对PHD滤波进行了系统的推导, 对推导过程
中的假设条件进行了说明. 可以发现, 在推导过程
中仅用到Bayes公式和全概率公式, 易于理解. 为
深入理解PHD滤波的算法本质, 改进算法的缺点,
从而更好地解决多目标跟踪问题提供了理论基础.
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Abstract
In order to well understand the probability hypothesis density, according to the physical-space model given by Ozgur

Erdin, we deduce the probability hypothesis density filter function with the Bayes theorem and the total probability
theorem. The derivation result is identical to the result in the literature, and the derivation process is described in detail.
The results in this paper will provide a theoretical basis for solving the target-death problem.
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